Generic regularity of minimal hypersurfaces in dimension 8

Yangyang Li

Princeton University

Joint work with Zhihan Wang

Geometric Analysis Seminar at UChicago, 2021 May 4

Outline

- Background
- 2 Singularities
- 3 Perturbation and generic regularity (Main result)
- Wey ingredients in the proof
- Further discussion

Outline

- Background
- 2 Singularities
- Perturbation and generic regularity (Main result
- Wey ingredients in the proof
- Further discussion

 (M^{n+1}, g) : (n+1)-dimensional closed Riemannian manifold

 $\Sigma^{\it n} \subset {\it M}^{\it n+1}$: an embedded closed hypersurface

Definition

- Σ is a minimal hypersurface, if $\delta \operatorname{Area}(\Sigma) = 0 \iff \tilde{H} = 0$;
- For a minimal hypersurface Σ , there exists a **Jacobi operator** L_{Σ} associated to $\delta^2 \operatorname{Area}(\Sigma)$,

$$L_{\Sigma} = -\Delta_{\Sigma} + (|A|^2 + \operatorname{Ric}(\vec{\nu}, \vec{\nu}));$$

- The Morse index of a minimal hypersurface Σ is the dimension of the maximal subspace where L_{Σ} is negatively definite; in particular, Σ is stable if $\operatorname{index}(\Sigma) = 0$;
- The minimal hypersurface Σ is **non-degenerate** if 0 is not an eigenvalue of L_{Σ} .

 (M^{n+1}, g) : (n+1)-dimensional closed Riemannian manifold

 $\Sigma^{\it n} \subset {\it M}^{\it n+1}$: an embedded closed hypersurface

Definition

- Σ is a minimal hypersurface, if $\delta \operatorname{Area}(\Sigma) = 0 \iff \vec{H} = 0$;
- For a minimal hypersurface Σ , there exists a **Jacobi operator** L_{Σ} associated to $\delta^2 \operatorname{Area}(\Sigma)$,

$$L_{\Sigma} = -\Delta_{\Sigma} + (|A|^2 + \operatorname{Ric}(\vec{\nu}, \vec{\nu}));$$

- The Morse index of a minimal hypersurface Σ is the dimension of the maximal subspace where L_{Σ} is negatively definite; in particular, Σ is stable if $\mathrm{index}(\Sigma) = 0$;
- ullet The minimal hypersurface Σ is **non-degenerate** if 0 is not an eigenvalue of L_{Σ} .

 (M^{n+1},g) : (n+1)-dimensional closed Riemannian manifold

 $\Sigma^{\it n} \subset {\it M}^{\it n+1}$: an embedded closed hypersurface

Definition

- Σ is a minimal hypersurface, if $\delta \operatorname{Area}(\Sigma) = 0 \iff \tilde{H} = 0$;
- For a minimal hypersurface Σ , there exists a **Jacobi operator** L_{Σ} associated to $\delta^2 \operatorname{Area}(\Sigma)$,

$$L_{\Sigma} = -\Delta_{\Sigma} + (|A|^2 + \operatorname{Ric}(\vec{\nu}, \vec{\nu}));$$

- The Morse index of a minimal hypersurface Σ is the dimension of the maximal subspace where L_{Σ} is negatively definite; in particular, Σ is stable if $\mathrm{index}(\Sigma) = 0$;
- The minimal hypersurface Σ is **non-degenerate** if 0 is not an eigenvalue of L_{Σ} .

 (M^{n+1},g) : (n+1)-dimensional closed Riemannian manifold

 $\Sigma^{\it n} \subset {\it M}^{\it n+1}$: an embedded closed hypersurface

Definition

- Σ is a minimal hypersurface, if $\delta \operatorname{Area}(\Sigma) = 0 \iff \tilde{H} = 0$;
- For a minimal hypersurface Σ , there exists a **Jacobi operator** L_{Σ} associated to $\delta^2 \operatorname{Area}(\Sigma)$,

$$L_{\Sigma} = -\Delta_{\Sigma} + (|A|^2 + \operatorname{Ric}(\vec{\nu}, \vec{\nu}));$$

- The Morse index of a minimal hypersurface Σ is the dimension of the maximal subspace where L_{Σ} is negatively definite; in particular, Σ is stable if $index(\Sigma) = 0$;
- The minimal hypersurface Σ is **non-degenerate** if 0 is not an eigenvalue of L_{Σ} .

 (M^{n+1},g) : (n+1)-dimensional closed Riemannian manifold

 $\Sigma^{\it n} \subset {\it M}^{\it n+1}$: an embedded closed hypersurface

Definition

- Σ is a minimal hypersurface, if $\delta \operatorname{Area}(\Sigma) = 0 \iff \vec{H} = 0$;
- For a minimal hypersurface Σ , there exists a **Jacobi operator** L_{Σ} associated to $\delta^2 \operatorname{Area}(\Sigma)$,

$$L_{\Sigma} = -\Delta_{\Sigma} + (|A|^2 + \operatorname{Ric}(\vec{\nu}, \vec{\nu}));$$

- The Morse index of a minimal hypersurface Σ is the dimension of the maximal subspace where L_{Σ} is negatively definite; in particular, Σ is stable if $\mathrm{index}(\Sigma)=0$;
- The minimal hypersurface Σ is **non-degenerate** if 0 is not an eigenvalue of L_{Σ} .

 (M^{n+1},g) : (n+1)-dimensional closed Riemannian manifold

 $\Sigma^{\it n} \subset {\it M}^{\it n+1}$: an embedded closed hypersurface

Definition

- Σ is a minimal hypersurface, if $\delta \operatorname{Area}(\Sigma) = 0 \iff \vec{H} = 0$;
- For a minimal hypersurface Σ , there exists a **Jacobi operator** L_{Σ} associated to $\delta^2 \operatorname{Area}(\Sigma)$.

$$L_{\Sigma} = -\Delta_{\Sigma} + (|A|^2 + \operatorname{Ric}(\vec{\nu}, \vec{\nu}));$$

- The Morse index of a minimal hypersurface Σ is the dimension of the maximal subspace where L_{Σ} is negatively definite; in particular, Σ is stable if $\operatorname{index}(\Sigma) = 0$;
- The minimal hypersurface Σ is **non-degenerate** if 0 is not an eigenvalue of L_{Σ} .

Question: Is there a minimal hypersurface in any given Riemannian manifold (M^{n+1}, g) ?

Answer: Yes

Theorem (E. de Giorgi, Federer-Fleming, J. Simons 60's - 70's

If $H_n(M^{n+1}) \neq 0$, then there exists a minimal hypersurface Σ^n with

$$\dim(\operatorname{Sing}(\Sigma)) \le n - 7$$
.

Note

- $x \in \text{Reg}(\Sigma)$ if $x \in \Sigma$ and there is a neighborhood $x \in U$ such that $\Sigma \cap U$ is a smooth hypersurface.
- $\operatorname{Sing}(\Sigma) = \overline{\Sigma} \setminus \operatorname{Reg}(\Sigma)$.
- WLOG, we always assume that $\Sigma = \text{Reg}(\Sigma)$.

Question: Is there a minimal hypersurface in any given Riemannian manifold (M^{n+1}, g) ?

Answer: Yes.

Theorem (E. de Giorgi, Federer-Fleming, J. Simons 60's - 70's

If $H_n(M^{n+1}) \neq 0$, then there exists a minimal hypersurface Σ^n with

$$\dim(\operatorname{Sing}(\Sigma)) \le n - 7$$

Note

- $x \in \text{Reg}(\Sigma)$ if $x \in \Sigma$ and there is a neighborhood $x \in U$ such that $\Sigma \cap U$ is a smooth hypersurface.
- $\operatorname{Sing}(\Sigma) = \overline{\Sigma} \setminus \operatorname{Reg}(\Sigma)$.
- WLOG, we always assume that $\Sigma = \text{Reg}(\Sigma)$.

Question: Is there a minimal hypersurface in any given Riemannian manifold (M^{n+1}, g) ?

Answer: Yes.

Theorem (E. de Giorgi, Federer-Fleming, J. Simons 60's - 70's)

If $H_n(M^{n+1}) \neq 0$, then there exists a minimal hypersurface Σ^n with

$$\dim(\operatorname{Sing}(\Sigma)) \leq n - 7$$
.

Note

- $x \in \text{Reg}(\Sigma)$ if $x \in \Sigma$ and there is a neighborhood $x \in U$ such that $\Sigma \cap U$ is a smooth hypersurface.
- $\operatorname{Sing}(\Sigma) = \overline{\Sigma} \setminus \operatorname{Reg}(\Sigma)$.
- WLOG, we always assume that $\Sigma = \text{Reg}(\Sigma)$.

Question: Is there a minimal hypersurface in any given Riemannian manifold (M^{n+1}, g) ?

Answer: Yes.

Theorem (E. de Giorgi, Federer-Fleming, J. Simons 60's - 70's)

If $H_n(M^{n+1}) \neq 0$, then there exists a minimal hypersurface Σ^n with

$$\dim(\operatorname{Sing}(\Sigma)) \leq n - 7$$
.

Note.

- $x \in \text{Reg}(\Sigma)$ if $x \in \overline{\Sigma}$ and there is a neighborhood $x \in U$ such that $\overline{\Sigma} \cap U$ is a smooth hypersurface.
- $\operatorname{Sing}(\Sigma) = \overline{\Sigma} \setminus \operatorname{Reg}(\Sigma)$.
- WLOG, we always assume that $\Sigma = \operatorname{Reg}(\Sigma)$.

Question: Is there a minimal hypersurface in any given Riemannian manifold (M^{n+1}, g) ?

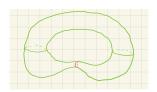
Answer: Yes.

Theorem (E. de Giorgi, Federer-Fleming, J. Simons 60's - 70's)

If $H_n(M^{n+1}) \neq 0$, then there exists a minimal hypersurface Σ^n with

$$\dim(\operatorname{Sing}(\Sigma)) \le n - 7.$$

Toy model.



Minimize area among all meridians.

 $\xrightarrow{\text{GMT}}$ there exists an area minimizer Σ^n .

 Σ^n is smooth outside a small set.

Theorem (Almgren-Pitts, Schoen-Simon '81)

For any given closed (M^{n+1},g) , there exists a minimal hypersurface Σ^n with $\dim(\mathrm{Sing}(\Sigma)) \leq n-7$.

Almgren-Pitts min-max theory

Toy model:

Consider the set ${\mathcal P}$ of all *sweepouts*

$$\Phi: I \to \mathcal{Z}_n(S^{n+1}, \mathbb{Z}_2)$$

Define min-max width

$$W = \inf_{\Phi \in \mathcal{P}} \sup_{t \in I} \mathbf{M}(\Phi(t))$$

 $\implies \Sigma^n$ realizing the min-max width

Theorem (Almgren-Pitts, Schoen-Simon '81)

For any given closed (M^{n+1},g) , there exists a minimal hypersurface Σ^n with $\dim(\mathrm{Sing}(\Sigma)) \leq n-7$.

Almgren-Pitts min-max theory

Toy model:

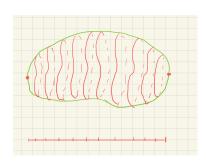
Consider the set ${\mathcal P}$ of all ${\it sweepouts}$:

$$\Phi: I \to \mathcal{Z}_n(S^{n+1}, \mathbb{Z}_2)$$
.

Define min-max width

$$W = \inf_{\Phi \in \mathcal{P}} \sup_{t \in I} \mathbf{M}(\Phi(t)).$$

 $\implies \Sigma^n$ realizing the min-max width.



Theorem (Almgren-Pitts, Schoen-Simon '81)

For any given closed (M^{n+1},g) , there exists a minimal hypersurface Σ^n with $\dim(\mathrm{Sing}(\Sigma)) \leq n-7$.

Almgren-Pitts min-max theory

Toy model:

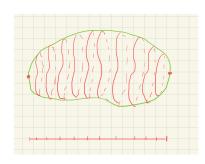
Consider the set \mathcal{P} of all *sweepouts*:

$$\Phi: I \to \mathcal{Z}_n(S^{n+1}, \mathbb{Z}_2)$$
.

Define min-max width

$$\mathcal{W} = \inf_{\Phi \in \mathcal{P}} \sup_{t \in I} \mathbf{M}(\Phi(t)).$$

 $\implies \Sigma^n$ realizing the min-max width.



< □ > < □ > < □ > < □ > < □ </p>

Theorem (Almgren-Pitts, Schoen-Simon '81)

For any given closed (M^{n+1},g) , there exists a minimal hypersurface Σ^n with $\dim(\mathrm{Sing}(\Sigma)) \leq n-7$.

Almgren-Pitts min-max theory

Toy model:

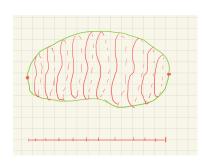
Consider the set \mathcal{P} of all *sweepouts*:

$$\Phi: I \to \mathcal{Z}_n(S^{n+1}, \mathbb{Z}_2)$$
.

Define min-max width

$$\mathcal{W} = \inf_{\Phi \in \mathcal{P}} \sup_{t \in I} \mathbf{M}(\Phi(t)).$$

 $\implies \Sigma^n$ realizing the min-max width.



Theorem

For $2 \le n \le 6$, there exist ∞ many minimal hypersurfaces. For n > 7, this also holds for generic metrics.

- Marques Neves '15: Ric > 0;
 Irie-Marques-Neves '17: Generic metrics for 2 ≤ n ≤ 6;
 A. Song '18: Any metrics for 2 ≤ n ≤ 6;
 L. '19: Generic metrics for n ≥ 7 ...
- Multiplicity one conjecture, Morse index estimates ...
 X. Zhou, Marques-Neves, A. Song, D. Ketover, Y. Liokumovich, J. Zhu, Z. Liu, L., ..
- Allen-Cahn setting: M. Guaraco, P. Garspar, O. Chodosh, C. Mantoulidis, A. Dey, R. Caju, H. Matthiesen...
- High codimensions: F. Almgren, Y. Tonegawa, N. Wickramasekera, D. Stern, A. Pigati, D. Parise, ...

Theorem

For $2 \le n \le 6$, there exist ∞ many minimal hypersurfaces. For $n \ge 7$, this also holds for generic metrics.

- Marques Neves '15: Ric > 0;
 Irie-Marques-Neves '17: Generic metrics for 2 ≤ n ≤ 6;
 A. Song '18: Any metrics for 2 ≤ n ≤ 6;
 L. '19: Generic metrics for n > 7 ...
- Multiplicity one conjecture, Morse index estimates ...
 X. Zhou, Marques-Neves, A. Song, D. Ketover, Y. Liokumovich, J. Zhu, Z. Liu, L., ..
- Allen-Cahn setting: M. Guaraco, P. Garspar, O. Chodosh, C. Mantoulidis, A. Dey, R. Caju, H. Matthiesen...
- High codimensions: F. Almgren, Y. Tonegawa, N. Wickramasekera, D. Stern, A. Pigati, D. Parise, ...

Theorem

For $2 \le n \le 6$, there exist ∞ many minimal hypersurfaces. For $n \ge 7$, this also holds for generic metrics.

- Marques Neves '15: Ric > 0;
 Irie-Marques-Neves '17: Generic metrics for 2 ≤ n ≤ 6;
 A. Song '18: Any metrics for 2 ≤ n ≤ 6;
 L. '19: Generic metrics for n ≥ 7 ...
- Multiplicity one conjecture, Morse index estimates ...
 X. Zhou, Marques-Neves, A. Song, D. Ketover, Y. Liokumovich, J. Zhu, Z. Liu, L., ...
- Allen-Cahn setting: M. Guaraco, P. Garspar, O. Chodosh, C. Mantoulidis, A. Dey, R. Caju, H. Matthiesen...
- High codimensions: F. Almgren, Y. Tonegawa, N. Wickramasekera, D. Stern, A. Pigati, D. Parise, ...

Theorem

For $2 \le n \le 6$, there exist ∞ many minimal hypersurfaces. For n > 7, this also holds for generic metrics.

- Marques Neves '15: $\mathrm{Ric} > 0$; Irie-Marques-Neves '17: Generic metrics for $2 \le n \le 6$; A. Song '18: Any metrics for $2 \le n \le 6$; L. '19: Generic metrics for $n \ge 7$...
- Multiplicity one conjecture, Morse index estimates ...
 X. Zhou, Marques-Neves, A. Song, D. Ketover, Y. Liokumovich, J. Zhu, Z. Liu, L., ...
- Allen-Cahn setting: M. Guaraco, P. Garspar, O. Chodosh, C. Mantoulidis, A. Dey, R. Caju, H. Matthiesen...
- High codimensions: F. Almgren, Y. Tonegawa, N. Wickramasekera, D. Stern, A. Pigati, D. Parise, ...

Theorem

For $2 \le n \le 6$, there exist ∞ many minimal hypersurfaces. For $n \ge 7$, this also holds for generic metrics.

- Marques Neves '15: $\mathrm{Ric} > 0$; Irie-Marques-Neves '17: Generic metrics for $2 \le n \le 6$; A. Song '18: Any metrics for $2 \le n \le 6$; L. '19: Generic metrics for $n \ge 7$...
- Multiplicity one conjecture, Morse index estimates ...
 X. Zhou, Marques-Neves, A. Song, D. Ketover, Y. Liokumovich, J. Zhu, Z. Liu, L., ...
- Allen-Cahn setting: M. Guaraco, P. Garspar, O. Chodosh, C. Mantoulidis, A. Dey, R. Caju, H. Matthiesen...
- High codimensions: F. Almgren, Y. Tonegawa, N. Wickramasekera, D. Stern, A. Pigati, D. Parise, ...

Outline

- Background
- Singularities
- 3 Perturbation and generic regularity (Main result
- Wey ingredients in the proof
- Further discussion

Simons Cone

•
$$C_S \cap S^7 = S^3(\frac{1}{\sqrt{2}}) \times S^3(\frac{1}{\sqrt{2}});$$

- C_S is area-minimizing (Bombieri-de Giorgi-Giusti '69);
- $\bullet \dim(\operatorname{Sing}(C_{\mathcal{S}})) = 0 = 7 7.$

Theorem (N. Smale '99)

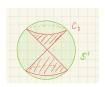
For any $n \ge 7$, there is (N^{n+1}, g) and a homological area minimizer M^n such that $Sing(M) = \{2 \text{ points}\}.$

Theorem (L. Simon '21

In \mathbb{R}^{n+1+l} $(n \geq 7, l \geq 1)$, for any closed subset $K \subset \{0\} \times \mathbb{R}^l$, there exist a metric $g \in C^{\infty}$ closed to g_{Eucl} and a strictly stable minimal hypersurface $\Sigma^{n+l} \subset (\mathbb{R}^{n+l}, g)$, such that

$$\operatorname{Sing} \Sigma = K. \tag{1}$$

Simons Cone



- $C_S \cap S^7 = S^3(\frac{1}{\sqrt{2}}) \times S^3(\frac{1}{\sqrt{2}});$
- C_S is area-minimizing (Bombieri-de Giorgi-Giusti '69);
- $\bullet \dim(\operatorname{Sing}(C_{\mathcal{S}})) = 0 = 7 7.$

Theorem (N. Smale '99)

For any $n \ge 7$, there is (N^{n+1}, g) and a homological area minimizer M^n such that $Sing(M) = \{2 \text{ points}\}.$

Theorem (L. Simon '21)

In \mathbb{R}^{n+1+l} $(n \geq 7, l \geq 1)$, for any closed subset $K \subset \{0\} \times \mathbb{R}^l$, there exist a metric g C^{∞} closed to g_{Eucl} and a strictly stable minimal hypersurface $\Sigma^{n+l} \subset (\mathbb{R}^{n+l}, g)$, such that

$$\operatorname{Sing} \Sigma = K. \tag{1}$$

Simons Cone

- $C_S \cap S^7 = S^3(\frac{1}{\sqrt{2}}) \times S^3(\frac{1}{\sqrt{2}});$
- C_S is area-minimizing (Bombieri-de Giorgi-Giusti '69);
- $\bullet \dim(\operatorname{Sing}(C_{\mathcal{S}})) = 0 = 7 7.$

Theorem (N. Smale '99)

For any $n \ge 7$, there is (N^{n+1}, g) and a homological area minimizer M^n such that $Sing(M) = \{2 \text{ points}\}.$

Theorem (L. Simon '21)

In \mathbb{R}^{n+1+l} $(n \geq 7, l \geq 1)$, for any closed subset $K \subset \{0\} \times \mathbb{R}^l$, there exist a metric g C^{∞} closed to g_{Eucl} and a strictly stable minimal hypersurface $\Sigma^{n+l} \subset (\mathbb{R}^{n+l}, g)$, such that

$$\operatorname{Sing} \Sigma = K. \tag{1}$$

Simons Cone

- $C_S \cap S^7 = S^3(\frac{1}{\sqrt{2}}) \times S^3(\frac{1}{\sqrt{2}});$
- C_S is area-minimizing (Bombieri-de Giorgi-Giusti '69);
- $\bullet \dim(\operatorname{Sing}(C_{\mathcal{S}})) = 0 = 7 7.$

Theorem (N. Smale '99)

For any $n \ge 7$, there is (N^{n+1}, g) and a homological area minimizer M^n such that $Sing(M) = \{2 \text{ points}\}.$

Theorem (L. Simon '21)

In \mathbb{R}^{n+1+l} ($n \geq 7, l \geq 1$), for any closed subset $K \subset \{0\} \times \mathbb{R}^l$, there exist a metric g C^{∞} closed to g_{Eucl} and a strictly stable minimal hypersurface $\Sigma^{n+l} \subset (\mathbb{R}^{n+l}, g)$, such that

$$\operatorname{Sing} \Sigma = K. \tag{1}$$

Simons Cone

- $C_S \cap S^7 = S^3(\frac{1}{\sqrt{2}}) \times S^3(\frac{1}{\sqrt{2}});$
- C_S is area-minimizing (Bombieri-de Giorgi-Giusti '69);
- $\bullet \dim(\operatorname{Sing}(C_{\mathcal{S}})) = 0 = 7 7.$

Theorem (N. Smale '99)

For any $n \ge 7$, there is (N^{n+1}, g) and a homological area minimizer M^n such that $Sing(M) = \{2 \text{ points}\}.$

Theorem (L. Simon '21)

In \mathbb{R}^{n+1+l} ($n \geq 7, l \geq 1$), for any closed subset $K \subset \{0\} \times \mathbb{R}^l$, there exist a metric g C^{∞} closed to g_{Eucl} and a strictly stable minimal hypersurface $\Sigma^{n+l} \subset (\mathbb{R}^{n+l}, g)$, such that

$$\operatorname{Sing} \Sigma = K. \tag{1}$$

Outline

- Background
- Singularities
- 3 Perturbation and generic regularity (Main result)
- 4 Key ingredients in the proof
- Further discussion

Question: Can we perturb away singularities generically? In particular, for any given N^{n+1} with a C^{∞} -generic metric g, is there a smooth minimal hypersurface?

From now on, we focus on the case n+1=8. The higher dimensional cases are widely open.

Theorem (N. Smale '93)

If $H_7(M^8, \mathbb{Z}) \neq 0$, then for a generic metric g, there exists a smooth homological area minimizer Σ^7 in (M^8, g) .

The proof relies on the analysis of area-minimizing cones C^n with $\mathrm{Sing}(C)=\{0\}$ by Hardt-Simon '85.

Theorem (Hardt-Simon '85)

- ① $\forall \xi \in E$, the ray $\{\lambda \xi : \lambda > 0\} \cap S$ is a transverse point,
- ② Sing(S) = \emptyset ;
- ⑤ S is a graph over C outside $B_R(0)$ where R = R(C) > 0;
- S is unique up to scaling.

Question: Can we perturb away singularities generically? In particular, for any given N^{n+1} with a C^{∞} -generic metric g, is there a smooth minimal hypersurface? From now on, we focus on the case n+1=8. The higher dimensional cases are widely open.

Theorem (N. Smale '93

If $H_7(M^\circ, \mathbb{Z}) \neq 0$, then for a generic metric g, there exists a smooth homological area minimizer Σ^7 in (M°, g) .

The proof relies on the analysis of area-minimizing cones C^n with $\mathrm{Sing}(C)=\{0\}$ by Hardt-Simon '85.

Theorem (Hardt-Simon '85)

- ① $\forall \xi \in E$, the ray $\{\lambda \xi : \lambda > 0\} \cap S$ is a transverse point,
- ⑤ S is a graph over C outside $B_R(0)$ where R = R(C) > 0,
- S is unique up to scaling.

Question: Can we perturb away singularities generically? In particular, for any given N^{n+1} with a C^{∞} -generic metric g, is there a smooth minimal hypersurface? From now on, we focus on the case n+1=8. The higher dimensional cases are widely open.

Theorem (N. Smale '93)

If $H_7(M^8, \mathbb{Z}) \neq 0$, then for a generic metric g, there exists a smooth homological area minimizer Σ^7 in (M^8, g) .

The proof relies on the analysis of area-minimizing cones C^n with $\mathrm{Sing}(C)=\{0\}$ by Hardt-Simon '85.

Theorem (Hardt-Simon '85)

- ① $\forall \xi \in E$, the ray $\{\lambda \xi : \lambda > 0\} \cap S$ is a transverse point,
- ⑤ S is a graph over C outside $B_R(0)$ where R = R(C) > 0,
- S is unique up to scaling.

Question: Can we perturb away singularities generically? In particular, for any given N^{n+1} with a C^{∞} -generic metric g, is there a smooth minimal hypersurface? From now on, we focus on the case n+1=8. The higher dimensional cases are widely open.

Theorem (N. Smale '93)

If $H_7(M^8, \mathbb{Z}) \neq 0$, then for a generic metric g, there exists a smooth homological area minimizer Σ^7 in (M^8, g) .

The proof relies on the analysis of area-minimizing cones C^n with $\operatorname{Sing}(C) = \{0\}$ by Hardt-Simon '85.

Theorem (Hardt-Simon '85)

- **1** $\forall \xi \in E$, the ray $\{\lambda \xi : \lambda > 0\} \cap S$ is a transverse point;
- \bigcirc Sing(S) = \emptyset ;
- **3** S is a graph over C outside $B_R(0)$ where R = R(C) > 0;
- S is unique up to scaling.

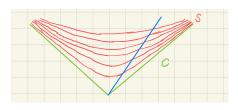


Figure: Hardt-Simon "foliation"

"Proof" of N. Smale '93:

- ① Start with (M^8, g_0) and an area-minimizer Σ^7 .
- **②** For any $p \in \operatorname{Sing}(\Sigma)$, using Hardt-Simon, we can concatenate $\Sigma^7 \setminus B_{r_p}(p)$ and $\lambda S \cap B_{r_p}(p)$ and obtain $\tilde{\Sigma}$ smooth.
- **③** Finally, perturb the metric g_0 to get g such that $\tilde{\Sigma}$ is minimal in (M, g).

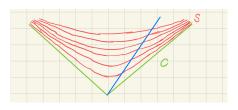


Figure: Hardt-Simon "foliation"

"Proof" of N. Smale '93:

- **1** Start with (M^8, g_0) and an area-minimizer Σ^7 .
- ② For any $p \in \operatorname{Sing}(\Sigma)$, using Hardt-Simon, we can concatenate $\Sigma^7 \setminus B_{r_p}(p)$ and $\lambda S \cap B_{r_p}(p)$ and obtain $\tilde{\Sigma}$ smooth.
- **③** Finally, perturb the metric g_0 to get g such that $\tilde{\Sigma}$ is minimal in (M,g).

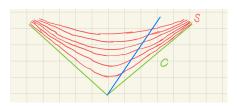


Figure: Hardt-Simon "foliation"

"Proof" of N. Smale '93:

- Start with (M^8, g_0) and an area-minimizer Σ^7 .
- **②** For any $p \in \operatorname{Sing}(\Sigma)$, using Hardt-Simon, we can concatenate $\Sigma^7 \setminus B_{r_p}(p)$ and $\lambda S \cap B_{r_p}(p)$ and obtain $\tilde{\Sigma}$ smooth.
- **③** Finally, perturb the metric g_0 to get g such that $\tilde{\Sigma}$ is minimal in (M,g).

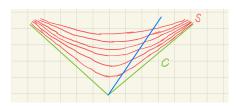


Figure: Hardt-Simon "foliation"

"Proof" of N. Smale '93:

- Start with (M^8, g_0) and an area-minimizer Σ^7 .
- **②** For any $p \in \operatorname{Sing}(\Sigma)$, using Hardt-Simon, we can concatenate $\Sigma^7 \setminus B_{r_p}(p)$ and $\lambda S \cap B_{r_p}(p)$ and obtain $\tilde{\Sigma}$ smooth.
- **③** Finally, perturb the metric g_0 to get g such that $\tilde{\Sigma}$ is minimal in (M,g).

Theorem (Chodosh-Liokumovich-Spolaor '20)

For any metric, there exists a minimal hypersurface Σ such that

$$\mathrm{index}(\Sigma) + \mathcal{H}^0(\mathrm{Sing}_{\textit{nm}}(\Sigma)) \leq 1 \, .$$

In particular, if $\mathrm{Ric}>0$, then for a generic metric, Σ is smooth.

Theorem (L.-Wang '20)

For a generic metric g, there is a smooth minimal hypersurface $\Sigma^7 \subset (M^8, g)$

Main difficulty: Hardt-Simon only works for area-minimizing cones, not for stable but not area-minimizing cones. Thus, we need a global perturbation instead of a local one.

Theorem (Chodosh-Liokumovich-Spolaor '20)

For any metric, there exists a minimal hypersurface Σ such that

$$\mathrm{index}(\Sigma) + \mathcal{H}^0(\mathrm{Sing}_{\textit{nm}}(\Sigma)) \leq 1 \, .$$

In particular, if $\mathrm{Ric}>0$, then for a generic metric, Σ is smooth.

Theorem (L.-Wang '20)

For a generic metric g, there is a smooth minimal hypersurface $\Sigma^7 \subset (M^8,g)$.

Main difficulty: Hardt-Simon only works for area-minimizing cones, not for stable but not area-minimizing cones. Thus, we need a global perturbation instead of a local one.

Theorem (Chodosh-Liokumovich-Spolaor '20)

For any metric, there exists a minimal hypersurface Σ such that

$$\mathrm{index}(\Sigma) + \mathcal{H}^0(\mathrm{Sing}_{nm}(\Sigma)) \leq 1.$$

In particular, if $\mathrm{Ric}>0$, then for a generic metric, Σ is smooth.

Theorem (L.-Wang '20)

For a generic metric g, there is a smooth minimal hypersurface $\Sigma^7\subset (extstyle M^8,g)$.

Main difficulty: Hardt-Simon only works for area-minimizing cones, not for stable but not area-minimizing cones. Thus, we need a global perturbation instead of a local one.

Outline

- Background
- Singularities
- Perturbation and generic regularity (Main result
- 4 Key ingredients in the proof
- Further discussion

Proposition (Wang '20)

Given (M^8,g) , $\Sigma^7 \subset M^8$ minimal and nondegenerate, a generic function $f \in C^\infty(M)$ and $c_j \to 0$, if in each $(M^8,(1+c_jf)g)$, there exists a minimal hypersurface Σ_j satisfying that

- $\operatorname{index}(\Sigma_j) = \operatorname{index}(\Sigma)$,
- $\Sigma_j \to \Sigma$ in the varifold sense.

Then there exist $p \in \operatorname{Sing}(\Sigma)$ and $r_p > 0$, such that for infinitely many j,

$$\operatorname{Sing}(\Sigma_j) \cap B_{r_p}(p) = \emptyset$$
.

- ① By Schoen-Simon '81, near $\operatorname{Reg}(\Sigma)$, Σ_i is smooth;
- Sues for induction arguments
 - \bigcirc Existence of $Σ_j$
 - Near $p' \in \operatorname{Sing}(\Sigma)$ $\{p\}$, $\operatorname{Sing}(\Sigma_j)$ may have more than one singular point. We need a new invariant of Σ instead of $\mathcal{H}^0(\operatorname{Sing})$.

Proposition (Wang '20)

Given (M^8,g) , $\Sigma^7 \subset M^8$ minimal and <u>nondegenerate</u>, a generic function $f \in C^\infty(M)$ and $c_j \to 0$, if in each $(M^8,(1+c_jf)g)$, there exists a minimal hypersurface Σ_j satisfying that

- $\operatorname{index}(\Sigma_j) = \operatorname{index}(\Sigma)$,
- $\Sigma_j \to \Sigma$ in the varifold sense.

Then there exist $p \in \operatorname{Sing}(\Sigma)$ and $r_p > 0$, such that for infinitely many j,

$$\operatorname{Sing}(\Sigma_j) \cap B_{r_p}(p) = \emptyset$$
.

- **1** By Schoen-Simon '81, near $Reg(\Sigma)$, Σ_i is smooth;
- Sues for induction arguments
 - Existence of Σ_i
 - Near $p' \in \operatorname{Sing}(\Sigma)$ $\{p\}$, $\operatorname{Sing}(\Sigma_j)$ may have more than one singular point. We need a new invariant of Σ instead of $\mathcal{H}^0(\operatorname{Sing})$.

Proposition (Wang '20)

Given (M^8,g) , $\Sigma^7 \subset M^8$ minimal and <u>nondegenerate</u>, a generic function $f \in C^\infty(M)$ and $c_j \to 0$, if in each $(M^8,(1+c_jf)g)$, there exists a minimal hypersurface Σ_j satisfying that

- $\operatorname{index}(\Sigma_j) = \operatorname{index}(\Sigma)$,
- $\Sigma_j \to \Sigma$ in the varifold sense.

Then there exist $p \in \operatorname{Sing}(\Sigma)$ and $r_p > 0$, such that for infinitely many j,

$$\operatorname{Sing}(\Sigma_j) \cap B_{r_p}(p) = \emptyset$$
.

- **1** By Schoen-Simon '81, near $Reg(\Sigma)$, Σ_i is smooth;
- Issues for induction arguments
 - **1** Existence of Σ_j ?
 - Near $p' \in \mathrm{Sing}(\Sigma)$ $\{p\}$, $\mathrm{Sing}(\Sigma_j)$ may have more than one singular point. We need a new invariant of Σ instead of $\mathcal{H}^0(\mathrm{Sing})$.

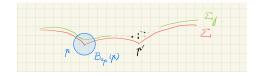
Proposition (Wang '20)

Given (M^8,g) , $\Sigma^7 \subset M^8$ minimal and <u>nondegenerate</u>, a generic function $f \in C^\infty(M)$ and $c_j \to 0$, if in each $(M^8,(1+c_jf)g)$, there exists a minimal hypersurface Σ_j satisfying that

- $\operatorname{index}(\Sigma_j) = \operatorname{index}(\Sigma)$,
- $\Sigma_j \to \Sigma$ in the varifold sense.

Then there exist $p \in \operatorname{Sing}(\Sigma)$ and $r_p > 0$, such that for infinitely many j,

$$\operatorname{Sing}(\Sigma_j) \cap B_{r_p}(p) = \emptyset$$
.



- **1** By Schoen-Simon '81, near $Reg(\Sigma)$, Σ_i is smooth;
- Issues for induction arguments
 - **1** Existence of Σ_j ?
 - Near $p' \in \operatorname{Sing}(\Sigma)$ $\{p\}$, $\operatorname{Sing}(\Sigma_j)$ may have more than one singular point. We need a new invariant of Σ instead of $\mathcal{H}^0(\operatorname{Sing})$.

Uniqueness of min-max width realization

Recall

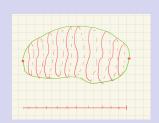
Consider the set \mathcal{P} of all *sweepouts*:

$$\Phi: I \to \mathcal{Z}_n(S^{n+1}, \mathbb{Z}_2)$$
.

Define min-max width

$$\mathcal{W} = \inf_{\Phi \in \mathcal{P}} \sup_{t \in I} \mathbf{M}(\Phi(t)).$$

 $\implies \Sigma^n$ realizing the min-max width.



If Σ is the unique one realizing $\mathcal{W}(g)$, then $\Sigma_j \subset (M, g_j)$ realizing $\mathcal{W}(g_j)$ will converge to Σ as $g_j \to g$.

Proposition (L.-Wang '20)

Unique realization holds under some technical assumptions.

Note. The proof is inspired by Chodosh-Liokumovich-Spolaor

Uniqueness of min-max width realization

Recall

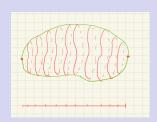
Consider the set \mathcal{P} of all *sweepouts*:

$$\Phi: I \to \mathcal{Z}_n(S^{n+1}, \mathbb{Z}_2)$$
.

Define min-max width

$$\mathcal{W} = \inf_{\Phi \in \mathcal{P}} \sup_{t \in I} \mathbf{M}(\Phi(t)).$$

 $\implies \Sigma^n$ realizing the min-max width.



If Σ is the unique one realizing $\mathcal{W}(g)$, then $\Sigma_j \subset (M, g_j)$ realizing $\mathcal{W}(g_j)$ will converge to Σ as $g_j \to g$.

Proposition (L.-Wang '20)

Unique realization holds under some technical assumptions.

Note. The proof is inspired by Chodosh-Liokumovich-Spolaor

Uniqueness of min-max width realization

Recall

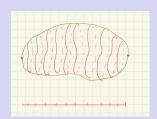
Consider the set \mathcal{P} of all *sweepouts*:

$$\Phi: I \to \mathcal{Z}_n(S^{n+1}, \mathbb{Z}_2)$$
.

Define min-max width

$$\mathcal{W} = \inf_{\Phi \in \mathcal{P}} \sup_{t \in I} \mathbf{M}(\Phi(t)).$$

 $\implies \Sigma^n$ realizing the min-max width.



If Σ is the unique one realizing $\mathcal{W}(g)$, then $\Sigma_j \subset (M, g_j)$ realizing $\mathcal{W}(g_j)$ will converge to Σ as $g_j \to g$.

Proposition (L.-Wang '20)

Unique realization holds under some technical assumptions.

Note. The proof is inspired by Chodosh-Liokumovich-Spolaor.

Consider a set of triples

 $\mathcal{M} = \{(\Sigma^7, \textit{M}^8, \textit{g}) | (\textit{M}^8, \textit{g}) \text{ open manifold, } \Sigma \text{ locally stable minimal hypersurface} \}.$

Definition

Define
$$SCap : \mathcal{M} \to \mathbb{N} \cup \{\infty\}$$
 satisfying

Finiteness For any nontrivial stable

$$1 \leq \operatorname{SCap}(C, \mathbb{R}^8, g_{Eucl}) < \infty;$$

Counting

$$SCap(\Sigma, M, g) = \begin{cases} 0 & \operatorname{Sing}(\Sigma) = \emptyset, \\ \sum_{p \in \operatorname{Sing}(\Sigma)} \operatorname{SCap}(C_p) & \text{otherwise}. \end{cases}$$

Upper semi-continuity For any $U \subset \subset N$ $(\Sigma_j, M, g_j) \to (\Sigma, M, g)$ and Σ_j stable, we have

$$\operatorname{SCap}(\Sigma, U, g) \geq \limsup_{j \to \infty} \operatorname{SCap}(\Sigma_j, U, g_j)$$
.

Consider a set of triples

 $\mathcal{M} = \{(\Sigma^7, M^8, g) | (M^8, g) \text{ open manifold, } \Sigma \text{ locally stable minimal hypersurface}\}.$

Definition

Define $\mathrm{SCap}:\mathcal{M}\to\mathbb{N}\cup\{\infty\}$ satisfying

Finiteness For any nontrivial stable minimal cone $C \subset (\mathbb{R}^8, g_{Eucl})$,

$$1 \leq \operatorname{SCap}(C, \mathbb{R}^8, g_{\operatorname{Eucl}}) < \infty;$$



Counting

$$SCap(\Sigma, M, g) = egin{cases} 0 & \operatorname{Sing}(\Sigma) = \emptyset, \ \sum_{p \in \operatorname{Sing}(\Sigma)} \operatorname{SCap}(C_p) & \text{otherwise}. \end{cases}$$

Upper semi-continuity For any $U \subset\subset M$,

$$(\Sigma_j, M, g_j) \to (\Sigma, M, g)$$
 and

$$\operatorname{SCap}(\Sigma, U, g) \geq \limsup_{j \to \infty} \operatorname{SCap}(\Sigma_j, U, g_j)$$

Consider a set of triples

 $\mathcal{M} = \{(\Sigma^7, M^8, g) | (M^8, g) \text{ open manifold, } \Sigma \text{ locally stable minimal hypersurface}\}.$

Definition

Define $\mathrm{SCap}:\mathcal{M}\to\mathbb{N}\cup\{\infty\}$ satisfying

Finiteness For any nontrivial stable minimal cone $C \subset (\mathbb{R}^8, g_{Eucl})$,

$$1 \leq \operatorname{SCap}(C, \mathbb{R}^8, g_{\operatorname{Eucl}}) < \infty;$$



Counting

$$SCap(\Sigma, M, g) = egin{cases} 0 & \operatorname{Sing}(\Sigma) = \emptyset, \ \sum_{p \in \operatorname{Sing}(\Sigma)} \operatorname{SCap}(C_p) & \text{otherwise}. \end{cases}$$

Upper semi-continuity For any $U \subset\subset M$,

$$(\Sigma_j, M, g_j) \to (\Sigma, M, g)$$
 and

$$\operatorname{SCap}(\Sigma, U, g) \geq \limsup_{j \to \infty} \operatorname{SCap}(\Sigma_j, U, g_j)$$

Consider a set of triples

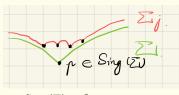
 $\mathcal{M} = \{(\Sigma^7, \textit{M}^8, \textit{g}) | (\textit{M}^8, \textit{g}) \text{ open manifold, } \Sigma \text{ locally stable minimal hypersurface} \}.$

Definition

Define $\mathrm{SCap}:\mathcal{M}\to\mathbb{N}\cup\{\infty\}$ satisfying

Finiteness For any nontrivial stable minimal cone $C \subset (\mathbb{R}^8, g_{Eucl})$,

$$1 \leq \operatorname{SCap}(C, \mathbb{R}^8, g_{Eucl}) < \infty;$$



Counting

$$\mathit{SCap}(\Sigma, \mathit{M}, \mathit{g}) = \begin{cases} 0 & \operatorname{Sing}(\Sigma) = \emptyset, \\ \sum_{\mathit{p} \in \operatorname{Sing}(\Sigma)} \operatorname{SCap}(\mathit{C}_\mathit{p}) & \text{otherwise} \, . \end{cases};$$

Upper semi-continuity For any $U \subset\subset M$,

$$(\Sigma_j, M, g_j) \to (\Sigma, M, g)$$
 and Σ stable we have

$$\operatorname{SCap}(\Sigma, U, g) \ge \limsup_{i \to \infty} \operatorname{SCap}(\Sigma_i, U, g_i)$$

Consider a set of triples

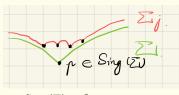
 $\mathcal{M} = \{(\Sigma^7, \textit{M}^8, \textit{g}) | (\textit{M}^8, \textit{g}) \text{ open manifold, } \Sigma \text{ locally stable minimal hypersurface} \}.$

Definition

Define $\mathrm{SCap}:\mathcal{M}\to\mathbb{N}\cup\{\infty\}$ satisfying

Finiteness For any nontrivial stable minimal cone $C \subset (\mathbb{R}^8, g_{Eucl})$,

$$1 \leq \operatorname{SCap}(C, \mathbb{R}^8, g_{Eucl}) < \infty;$$



Counting

$$\mathit{SCap}(\Sigma, \mathit{M}, \mathit{g}) = \begin{cases} 0 & \operatorname{Sing}(\Sigma) = \emptyset, \\ \sum_{\mathit{p} \in \operatorname{Sing}(\Sigma)} \operatorname{SCap}(\mathit{C}_\mathit{p}) & \text{otherwise} \, . \end{cases};$$

Upper semi-continuity For any $U \subset\subset M$,

$$(\Sigma_j, M, g_j) \to (\Sigma, M, g)$$
 and Σ stable we have

$$\operatorname{SCap}(\Sigma, U, g) \ge \limsup_{i \to \infty} \operatorname{SCap}(\Sigma_i, U, g_i)$$

Consider a set of triples

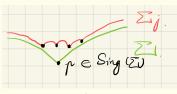
 $\mathcal{M} = \{(\Sigma^7, \textit{M}^8, \textit{g}) | (\textit{M}^8, \textit{g}) \text{ open manifold, } \Sigma \text{ locally stable minimal hypersurface}\}.$

Definition

Define $SCap : \mathcal{M} \to \mathbb{N} \cup \{\infty\}$ satisfying

Finiteness For any nontrivial stable minimal cone $C \subset (\mathbb{R}^8, g_{Eucl})$,

$$1 \leq \operatorname{SCap}(C, \mathbb{R}^8, g_{Eucl}) < \infty;$$



Counting

$$SCap(\Sigma, M, g) = egin{cases} 0 & \operatorname{Sing}(\Sigma) = \emptyset, \ \sum_{
ho \in \operatorname{Sing}(\Sigma)} \operatorname{SCap}(\mathcal{C}_{
ho}) & \text{otherwise} \ . \end{cases}$$

Upper semi-continuity For any $U \subset\subset M$,

$$(\Sigma_j, M, g_j) \to (\Sigma, M, g)$$
 and

$$\operatorname{SCap}(\Sigma, U, g) \geq \limsup_{j \to \infty} \operatorname{SCap}(\Sigma_j, U, g_j).$$

Strategy:

- **1** We can start with (M^8, g) and $\Sigma^7 \subset (M^8, g)$ uniquely realizing $\mathcal{W}(g)$;
- ② Perturb g to obtain g_j and Σ_j uniquely realizing $\mathcal{W}(g_j)$
- ullet Show that $\exists p \in \Sigma$, s.t., $\operatorname{Sing}(\Sigma_j) \cap B_{r_p}(p) = \emptyset$, and thus for j large enough,

$$SCap(\Sigma_j) < SCap(\Sigma);$$

Repeat step 2 and 3 to obtain a smooth minimal hypersurface.

Strategy:

- **1** We can start with (M^8, g) and $\Sigma^7 \subset (M^8, g)$ uniquely realizing $\mathcal{W}(g)$;
- ② Perturb g to obtain g_j and Σ_j uniquely realizing $\mathcal{W}(g_j)$;
- ② Show that $\exists p \in \Sigma$, s.t., $\operatorname{Sing}(\Sigma_j) \cap B_{r_p}(p) = \emptyset$, and thus for j large enough,

$$\operatorname{SCap}(\Sigma_j) < \operatorname{SCap}(\Sigma);$$

Repeat step 2 and 3 to obtain a smooth minimal hypersurface.

Strategy:

- **1** We can start with (M^8, g) and $\Sigma^7 \subset (M^8, g)$ uniquely realizing $\mathcal{W}(g)$;
- ② Perturb g to obtain g_j and Σ_j uniquely realizing $\mathcal{W}(g_j)$;
- **3** Show that $\exists p \in \Sigma$, s.t., $\operatorname{Sing}(\Sigma_j) \cap B_{r_p}(p) = \emptyset$, and thus for j large enough,

$$\operatorname{SCap}(\Sigma_j) < \operatorname{SCap}(\Sigma);$$

Repeat step 2 and 3 to obtain a smooth minimal hypersurface.

Strategy:

- **9** We can start with (M^8, g) and $\Sigma^7 \subset (M^8, g)$ uniquely realizing $\mathcal{W}(g)$;
- ② Perturb g to obtain g_j and Σ_j uniquely realizing $\mathcal{W}(g_j)$;
- **3** Show that $\exists p \in \Sigma$, s.t., $\operatorname{Sing}(\Sigma_j) \cap B_{r_p}(p) = \emptyset$, and thus for j large enough,

$$\operatorname{SCap}(\Sigma_j) < \operatorname{SCap}(\Sigma);$$

• Repeat step 2 and 3 to obtain a smooth minimal hypersurface.

Outline

- Background
- Singularities
- Perturbation and generic regularity (Main result
- 4 Key ingredients in the proof
- Further discussion

Open Questions:

- Can the perturbation work for multi-parameter min-max minimal hypersurfaces in dimension 8?
- 2 How about higher dimensions?

For the first question, it seems possible, if we can generalize a structure theorem by Brian White to singular minimal hypersurfaces.

Theorem (B. White '91)

For generic metrics, smooth minimal hypersurfaces are non-degenerate.

A recent work by Nick Edelen has made an important step towards it in some perspective, but more work needs to be done.

Theorem (N. Edelen '21)

In a closed (N^8, g) , the number of diffeomorphism classes of minimal hypersurfaces of bounded area and Morse index is finite.

Open Questions:

- Can the perturbation work for multi-parameter min-max minimal hypersurfaces in dimension 8?
- 4 How about higher dimensions?

For the first question, it seems possible, if we can generalize a structure theorem by Brian White to singular minimal hypersurfaces.

Theorem (B. White '91)

For generic metrics, smooth minimal hypersurfaces are non-degenerate.

A recent work by Nick Edelen has made an important step towards it in some perspective, but more work needs to be done.

Theorem (N. Edelen '21)

In a closed (N^8,g) , the number of diffeomorphism classes of minimal hypersurfaces of bounded area and Morse index is finite.

Open Questions:

- Can the perturbation work for multi-parameter min-max minimal hypersurfaces in dimension 8?
- 2 How about higher dimensions?

For the first question, it seems possible, if we can generalize a structure theorem by Brian White to singular minimal hypersurfaces.

Theorem (B. White '91)

For generic metrics, smooth minimal hypersurfaces are non-degenerate.

A recent work by Nick Edelen has made an important step towards it in some perspective, but more work needs to be done.

Theorem (N. Edelen '21)

In a closed (N^8, g) , the number of diffeomorphism classes of minimal hypersurfaces of bounded area and Morse index is finite.

Open Questions:

- Can the perturbation work for multi-parameter min-max minimal hypersurfaces in dimension 8?
- 2 How about higher dimensions?

For the first question, it seems possible, if we can generalize a structure theorem by Brian White to singular minimal hypersurfaces.

Theorem (B. White '91)

For generic metrics, smooth minimal hypersurfaces are non-degenerate.

A recent work by Nick Edelen has made an important step towards it in some perspective, but more work needs to be done.

Theorem (N. Edelen '21)

In a closed (N^8,g) , the number of diffeomorphism classes of minimal hypersurfaces of bounded area and Morse index is finite.

Thank you

21 / 21