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1. Introduction

In Riemannian geometry, the existence and regularity of minimal hypersurfaces
is one of the central problems. In 1982, motivated by the existence results in (n+1)-
dimensional closed manifolds by G.D. Birkhoff ([Bir17], n = 1), J. Pitts ([Pit81],
2 ≤ n ≤ 5) and R. Schoen and L. Simon ([SS81], n ≥ 6), S.-T. Yau proposed
the conjecture of existence of infinitely many minimal surfaces in 3-dimensional
Riemannian manifolds.

Conjecture 1 (Yau’s conjecture, [Yau82]). Any closed three-dimensional manifold
must contain an infinite number of immersed minimal surfaces.

In [IMN18], K. Irie, F.C. Marques and A. Neves, using the Weyl law [LMN18]
for volume spectra by Y. Liokumovich and the last two named authors, proved a
stronger version of Yau’s conjecture in the generic case.

Theorem 1.1 (Density of minimal hypersurfaces in the generic case, [IMN18]).
Let Mn+1 be a closed manifold of dimension n+ 1, with 3 ≤ n+ 1 ≤ 7. Then for a
C∞-generic Riemannian metric g on M , the union of all closed, smooth, embedded
minimal hypersurfaces is dense.

Later, in [MNS17], F.C. Marques, A. Neves and A. Song gave a quantitative
description of the density, i.e., the equidistribution of a sequence of minimal hyper-
surfaces under the same condition.

The Yau’s conjecture for 2 ≤ n ≤ 6 for general C∞ metrics was finally resolved
by A. Song [Son18] using the methods developed by F.C. Marques and A. Neves in
[MN17].

Recently, X. Zhou [Zho19] confirmed Marques-Neves multiplicity one conjecture
for bumpy metrics, which combined with work of Marques-Neves [MN18] on the
Morse index leads to:

Theorem 1.2 (Theorem 8.4, [MN18]). Let g be a C∞-generic (bumpy) metric on
a closed manifold Mn+1, 3 ≤ (n + 1) ≤ 7. For each k ∈ N, there exists a smooth,
closed, embedded, multiplicity one, two-sided, minimal hypersurface Σk such that

(1.1) ωk(M, g) = areag(Σk) index(Σk) = k

and

(1.2) lim
k→∞

areag(Σk)

k
1

n+1

= a(n)vol(M, g)
n

n+1

where a(n) > 0 is a dimensional constant in Weyl law.

Note that most of the results above were obtained in the Almgren-Pitts min-
max setting (Zhou’s result on the multiplicity one conjecture was based on a new
regularization of the area functional in Cacciopoli min-max setting developed by
him and J. Zhu [ZZ18]). In the Allen-Cahn min-max setting, P. Gaspar and M.A.M.
Guaraco [GG18] and O. Chodosh and C. Mantoulidis [CM18](n = 2) gave similar
results. In particular, O. Chodosh and C. Mantoulidis proved the multiplicity one
conjecture in 3-manifolds before Zhou’s result.

More recently, the author adapted Irie-Marques-Neves’ approach to prove Yau’s
conjecture in higher dimensions (n ≥ 7) for generic metrics.

Theorem 1.3 (Theorem 1.3, [Li19]). Given a closed manifold Mn+1(n ≥ 7), there
exists a (Baire sense) generic subset of C∞ metrics such that M endowed with any
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one of those metrics contains infinitely many singular minimal hypersurfaces with
optimal regularity.

Remark 1. In fact, for (n+ 1) ≤ 8, the adapted method in the proof implies that
for generic metrics, the p-widths minimal hypersurfaces are dense, which supports
the equidistribution of p-widths minimal hypersurfaces conjectured by F.C. Marques
and A. Neves.

In a working project, the author is also able to prove the Morse index upper
bound for minimal hypersurface from Almgren-Pitts theory without dimensional
restriction, which implies the following theorem:

Theorem 1.4. Suppose that (Mn+1, g) is a closed Riemannian manifold (n +
1 ≥ 3). Then for any p ∈ N+, there exists a stationary, integral varifold V with
spt(V ) = Σ such that

• ‖V ‖(M) = ωp(M, g)
• Ind(Σ) ≤ p
• Hs(sing(Σ)) = 0,∀s > n− 7. In particular, when n ≤ 6, Σ is smooth.

Remark 2. In a Riemann surface, the index upper bound is still true but the sup-
port of the varifold might only be a geodesic network rather than a closed geodesic.

Outline of the Notes. In Section 2, we shall recall some definitions and nota-
tions from geometric measure theory, and introduce the notion ‘Almost Minimizing’
which helps to establish the regularity result in Almgren-Pitts theory.

In Section 3, we shall see an surprising and useful result on the topology of
the space of modulo 2 flat chains proved by F.J. Almgren in his PhD thesis. The
nontrivial topology of this space enable us to apply Morse theory in order to search
critical points, i.e., minimal hypersurfaces.

In Section 4, the existence result of a non-empty almost minimizing varifold
in arbitrary closed manifolds will be proved following J. Pitts’ idea. The setup
of his min-max theory and his novel combinatorial arguments with some sort of
simplification will be presented in this section.

In Section 5, instead of following Pitts’ original idea involving Schoen-Simon-Yau
curvature estimate, we will outline the general result by R. Schoen and L. Simon
so as to prove the regularity of almost minimizing varifolds in arbitrary dimesional
closed manifolds. As a consequence of Section 4 and Section 5, we obtain one
minimal hypersurface in a closed manifold, possibly with a small singularity set in
higher dimesions.

In Section 6, we will outline the proof for Yau’s conjecture in generic metrics (in
arbitrary dimensions).

2. Preliminaries

2.1. Definitions and Notations.
In this part we recall some definitions from geometric measure theory. Readers

who are not familiar with these are recommended to refer to the standard lecture
notes of L. Simon [Sim84] and the classic book of H. Federer [Fed96].

Let (Mn+1, g) be a closed Riemannian manifold isometrically embedded in RL.
In general, the Almgren-Pitts min-max theory will work simultaneously on both

the space of currents and the space of varifolds. The basic notations for these spaces
are:
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• Ik(M): the space of k-dimensional integral currents in RL supported in M
• Zk(M): the space of T ∈ Ik(M) with ∂T = 0
• Ik(M ;Z2): the space of k-dimensional mod 2 flat chains in RL supported

in M (See 4.4.26 [Fed96])
• Zk(M ;Z2): the space of T ∈ Ik(M ;Z2) with ∂T = 0
• Zk(M,K;Z2); the space of T ∈ Ik(M ;Z2) with spt(∂T ) ⊂ K
• Vk(M): the closure, in the weak topology, of the space of k-dimensional

rectifiable varifolds in RL supported in M
• IVk(M): the space of k-dimemsional integral rectifiable varifolds

For T ∈ Ik(M) or Ik(M ;Z2), the associated integral varifold and Radon measure
in M are denoted by |T | and ‖T‖ respectively, and for V ∈ Vk(M), the associated
Radon measure is denoted by ‖V ‖.

Now, let’s consider some metrics related to the topology of the spaces above.
On Vk(M), we can define the F metric as in [Pit81],

(2.1)

F : Vk(M)× Vk(M)→ R+

F(V,W ) = sup{V (f)−W (f) : f ∈ Cc(Gk(M)),

where |f | ≤ 1,Lip(f) ≤ 1}

Note that for any c > 0, the F-metric topology and the weak topology coincide on
Vk(M) ∩ {V : ‖V ‖(M) ≤ c}. The restriction of F to a borel set B ⊂ M will be
defined as

(2.2) FB(V,W ) := FB(V xGk(B),WxGk(B))

On Ik(M), we can define the mass norm M, the flat metric FM and the F
metric as follows.

• For any T ∈ Ik(M),

(2.3) M(T ) = sup
‖ω‖≤1,ω∈Dn(M)

T (ω)

• We define FM as

(2.4)

FM : Ik(M)× Ik(M)→ R+

FM (T1, T2) = inf{M(R) + M(S) : T1 − T2 = ∂R+ S,

where R ∈ Ik+1(M), S ∈ Ik(M)}

• The F metric is defined as

(2.5)
F : Ik(M)× Ik(M)→ R+

F(T, S) = F(|T |, |S|) + FM (T, S)

We assume that Ik(M) and Zk(M) are endowed with the flat metric, while
Ik(M ; ν) and Zk(M ; ν) denote the same sets endowed with the metric ν (M norm
or F metric).

Note that all the metrics could be defined on Ik(M ;Z2) and we also have similar
notations Ik(M ; ν;Z2) and Zk(M ; ν;Z2).

At a first glance, the limiting current of integral rectifiable currents and the
limiting varifold of their associated integral varifolds might be related. However,
they could be rather different.
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Example 2.1. Let Snr ⊂ Rn+1 be a n-dimensional sphere with radius r centered
at 0 and [[Snr ]] be the associated integral current whose orientation is given by the
outward normal. Consider a sequence of integral currents

(2.6) Ti = [[Sn1+1/i]]− [[Sn1 ]]

Obviously, in the flat topology, Ti → 0 while in the weak topology, |Ti| → 2|[[Sn1 ]]|.

Fortunately, we have the following fact.

Exercise 1 (2.18(f) [Pit81]). Let T, T1, T2, · · · ∈ Ik(M), limi Ti = T in the flat
topology, and limi |Ti| = V ∈ Vk(M) in the weak topology. Then ‖T‖ ≤ ‖V ‖ and
the following three conditions are equivalent:

(1) ‖T‖ = ‖V ‖
(2) |T | = V
(3) ‖V ‖(M) = M(T )

Note that in the general case, we could not concluded that |T | ≤ V as one would
expect due to the following counter example.

Example 2.2. Let Ti be the integral currents associated to the curves with endpoints
(0, 0) and (1, 0) in Figure 1. Ti converges to the current associated to the interval
[0, 1], but |Ti| would converge to a varifold which is not even rectifiable. More
precisely, the limit of |Ti| would be the sum of two product Radon measures, i.e.,
the products of Lebesgue measure on [0, 1] and δ measures on G(2, 1) corresponding
to the lines making 45◦ with the [0, 1] interval.

T1 T2 T3

· · ·

Figure 1. Example 2.2

Exercise 2. Use Exercise 1 to prove the following fact: If S, T1, T2, · · · ∈ Zk(M),
then

(2.7) lim
i→∞

F(Ti, S) = 0

if and only if

(2.8) lim
i→∞

F(Ti, S) = 0 and lim
i→∞

M(Ti) = M(S)

2.2. Almost Minimizing Varifolds.

Definition 2.1 (Definitions 3.1 [Pit81]). Assume that ν is one of the three metrics
FM , F and M, and U is an open subset of M .

(1) For each pair of numbers ε, δ > 0, we define

ak(U ; ε, δ; ν)

to be the set of all currents T ∈ Zk(M,M\U ;Z2) with the following prop-
erty:

If a finite sequence {Ti}qi=0 in Zk(M,M\U ;Z2) with
• T0 = T and spt(T − Ti) ⊂ U,∀i
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• ν(Ti − Ti−1) ≤ δ for all i ≥ 1
• M(Ti) ≤M(T ) + δ

then M(T )−M(Tq) ≤ ε.
(2) We say that V ∈ Vk(M) is ν almost minimizing in U if and only if

for each positive ε there exist a δ > 0 and T ∈ a(U ; ε, δ; ν) such that
FU (V, |T |) < ε. We say that V is ν almost minimizing at p if there
exists a neighborhood U of p such that V is ν almost minimizing inside U .
We would omit ν if ν = FM .

Theorem 2.1 (Theorem 3.3 [Pit81]). If V ∈ Vk(M) is almost minizing in U , then
V is stable in U .

Exercise 3. Prove the theorem by contradiction.

Theorem 2.2 (Theorem 3.9 [Pit81]). Let V ∈ Vk(M).

(1) Each of the these statements implies the one following it.
(a) V is almost minimizing in U .
(b) V is F almost minimizing in U .
(c) V is M almost minimizing in U .
(d) V is almost minimizing in any relatively open subset W of M with

W ⊂⊂ U .
(2) The following statements are equivalent:

(a) V is almost minimizing at p.
(b) V is F almost minimizing at p.
(c) V is M almost minimizing at p.

The proof of the theorem is not difficult but rather lengthy, so we will not present
it here. The following simple exercise could be viewed as a hint for the proof.

Exercise 4. On R2, construct a M-continuous path between two currents [0, 1] ×
0 ∪ 0× [0, 1] and [0, 1]× 1 ∪ 1× [0, 1] fixing the boundary.

For a local almost minimizing codimension 1 varifold V , we could locally con-
struct a class of comparison surfaces to V in Vk(M), which would be helpful in
proving the rectifiability and even the smoothness of V (Consruction 3.10 [Pit81]).

Let K be a compact subset of U and V ∈ Vk(M) be almost minimizing in U .
We construct

(2.9) b(V ;U,K)

a class of comparison surfaces to V in Vk(M) from the definition of the almost
minimizingness.

Note that there exist sequences {δi}, {εi} of positive real numbers with δi ↘
0, εi ↘ 0 and a sequence Ti ∈ ak(U ; εi, δi) with FU (V, |Ti|) < εi. Now we can fix
the integer i and define µi to be the infimum of all numbers M(S) corresponding to
all S for which there exists a sequence Ti = T 1

i , T
2
i , · · ·T

q
i = S in Zk(M,M\U ;Z2)

with

(2.10)

spt(T ji − Ti) ⊂ K

sup
j

M(T ji ) ≤M(Ti) + δi

sup
j
FM (T ji − T

j−1
i ) ≤ δi
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Then we can choose a finite sequence Ti = T 1
i , T

2
i , · · · , T

q
i = T ∗i in Zk(M,M\U ;Z2)

with M(T ∗i ) = µi.
Define

(2.11) V ∗i = V xGk(M\U) + |T ∗i |xGk(U)

and

(2.12) V ∗ = lim
i
V ∗i

The set b(V ;U,K) consists of all such V ∗, which is compact and nonempty.

Theorem 2.3 (Theorem 3.11 [Pit81]). Suppose V ∈ Vk(M), V is almost minimiz-
ing in U , K is a compact subset of U , and V ∗ ∈ b(V ;U,K). Then

(1) V xGk(M\K) = V ∗xGk(M\K).
(2) V ∗ is almost minimizing in U .
(3) ‖V ‖(M) = ‖V ∗‖(M).
(4) For each ε > 0, there exists T ∈ Zk(M,M\U ;Z2) such that FU (V ∗, T ) < ε

and TxZ is locally area minimizing with respect to (Z, ∅) for all compact
Lipschitz neighborhood retracts Z ⊂ Int(K). In addition, |T | can be chosen
to be stable.

(5) V ∗ ∈ IVk(Int(K)).

Proof. The first four arguments follow from the construction. To prove (5), it
suffices to show that V ∗xGk(Z) ∈ IVk(Z) whenver Z is relatively open subset of
M with Z ⊂ Int(K) and ‖V ∗‖(∂Z) = 0.

Letting V ∗1 , V
∗
2 , · · · in the definition of V ∗, then we have

lim
i
V ∗i xGk(Z) = V ∗xGk(Z)(2.13)

V ∗i xGk(Z) ∈ IVk(Z)(2.14)

V ∗i xGk(Z) is stationary in Z(2.15)

V ∗xGk(Z) ∈ IVk(Z)(2.16)

�

Theorem 2.4 (Theorem 3.13 [Pit81]). Let V ∈ Vk(M). If for each p ∈ M , there
exists a fininte positive number r with the property that V is almost minimizing
in A(p, s, r) (an open annulus centered at p with inner and outer radii s and r,
respectively) for all 0 < s < r, and if V is stationary, then V ∈ IVk(M).

Outline of Proof. Observe that V is almost minimizing almost everywhere.
The first step is to show the rectifiability of V . In fact, we know that at each

point p where V is almost minimizing, the replacement V ∗ ∈ IVk(M) which would
help to induce the positive lower bound of the density of V , Θk(‖V ‖, p). Allard’s
regularity theorem would then imply the rectifiability of V .

To show that Θ(V, p) is an integer, we could restrict to the point p where V has
a unique approximate tangent space TpV . At those points, we could use a sequence
of scaled V ∗ to approximate TpV . The Federer-Fleming compactness for stationary
varifolds would give the integrability of TpV as well. �
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3. Almgren’s Isomorphism

In 1962, in his PhD thesis, F.J. Almgren showed the following isomorphism.

Theorem 3.1 (Theorem (7.5) [Alm62]). For any smooth closed Riemannian man-
ifold M and any nonnegative integers k and m, we have

(3.1) πk(Zm(M); 0) ∼= Hk+m(M)

The idea of the proof is to use the isoperimetric choice from isoperimetric theorem
to construct a canonical map FM : πk(Zm(M); 0) → Hk+m(M) and then we need
to show that it is both surjective and injective.

Let’s first start with the isoperimetric theorem.

Theorem 3.2 ([Sim84]). Suppose T ∈ Zk(RL)(k ≥ 1, L > k), sptT is compact.
Then there exists R ∈ Ik+1(RL) with sptR compact, ∂R = T and

(3.2) M(R)
k

k+1 ≤ cM(T )

where c = c(k, L).

In general, the theorem is not true if restricted to a closed manifold whose
homology is nontrivial. However, for a fixed manifold M , if M(T ) is small enough,
it is still true as follows.

Proposition 3.1 (Proposition (1.1) [Alm62]). For each smooth closed manifold M
isometrically embedded in RL, there are numbers ε > 0 and c < ∞ such that, if
T ∈ Zk(M), k > 0 and M(T ) < ε, then there exists R ∈ Ik+1(M) with ∂R = T ,

and M(R)
k

k+1 ≤ cM(T )

(3.3) M(R) ≤ inf{M(Q) : Q ∈ Ik+1(M) and ∂Q = T}
Moreover, if the smallness condition is replaced by FM (T, 0) < ε for some other
small ε > 0, then such an R still exists and M(R) = FM (T, 0).

Proof. In the case where M(T ) < ε, it suffices to find one Q satisfing the other
estimates, and then the Federer-Fleming compactness will imply the existence of
R.

Since M is a smooth closed submanifold, there exists η > 0 such that we can
construct a Lipschitz retraction r from η-neighborhood Bη(M) to M itself.

By the scaled version of Deformation theorem ([Sim84]), we can find an integer

linear combination P of disjoint k-dimensional cubes with side length = η/(10
√
L)

contained in Bη(M) so that

(3.4) T = [[P ]] + ∂S

where S is also an integral current supported in Bε(M). Moreover, we also have
the estimates

(3.5)
M(S)

k
k+1 ≤ cM(T )

M(P ) ≤ cM(T )

Note that if P is nonempty, then there is at least one cube in P so M([[P ]]) ≥(
η/(10

√
L)
)k

. Therefore, if ε > 0 is chosen small enough, i.e., cε <
(
η/(10

√
L)
)k

,

then P = ∅. In this case, using the retraction, we obtain that

(3.6) T = r#T = ∂ (r#S) =: ∂Q
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and the estimate

(3.7) M(Q) ≤ Lip(r)k+1M(S)

In sum, we can conclude the existence of one satisfactory Q.
In the case where FM (T, 0) < ε, by definition, we know that there exists R ∈

Ik+1(M) and S ∈ Ik(M) such that T = ∂R + S and FM (T, 0) = M(R) + M(S).
We only need to show that S = 0.

Suppose not, since M(S) ≤ ε, by the first argument, there exists R′ ∈ Ik+1(M)

with M(R′) = c
k+1
k M(S)

k+1
k < M(S) as long as ε is small enough. Now we can

instead write T = ∂(R + R′) with M(R + R′) < M(R) + M(S) which gives a
contradiction. �

Definition 3.1. If T and R are as in the proposition above, then R is called an
isoperimetric choice for T .

3.1. Special Case: Isomorphism for Mod 2 Hypercycles.
For mod 2 hypercycles Zn(Mn+1;Z2), F.C. Marques and A. Neves gave a simpler

proof [MN18]. Let’s first recall the constancy theorem.

Theorem 3.3 (Constancy Theorem). If R ∈ Zn+1(M ;Z2) then R = 0 or M .

Corollary 3.1. The boundary map ∂ : In+1(Mn+1;Z2) → Z0
n(Mn+1;Z2) is a

2-cover.

Using Constancy Theorem and Isoperimetric Theorem, we can prove the follow-
ing lifting property.

Exercise 5 (Lifting Property). For every continous map Ψ : Ip → Z0
n(M ;Z2)

and U0 ∈ In+1(M ;Z2) with ∂U0 = Ψ(0), there exists a unique continuous map
U : Ip → In+1(M ;Z2) such that ∂U(x) = Ψ(x) and U(0) = U0.

On Mn+1, we can define a Morse function f : M → [0, 1], and it is easy to see
that for any R ∈ In+1(M ;Z2),

(3.8) t ∈ [0, 1]→ R ∩ {f ≤ t}

is continuous in the flat norm. With f , we can show:

Lemma 3.1. In+1(M ;Z2) is contractible.

Now, we can get a short proof of Almgren’s Isomorphism in this case.

Proposition 3.2. πk(Zn(Mn+1;Z2), 0) = 0,∀k ≥ 2.

Proof. Let Ψ : Ik → Zn with Ψ(∂Ik) = 0. Using the lifting property, we can obtain
the lifting map U : Ik → In+1(M ;Z2) with U(0) = 0.

Note that ∂I is connected, the constancy theorem gives that U(∂I) = 0 so we
can define a homotopy map

(3.9)
h : Ik × [0, 1]→ Z0

n

h(x, t) = ∂(U(x) ∩ {f ≤ t})

which implies that Ψ is homotopic to 0. �

Proposition 3.3. π1(Zn(Mn+1;Z2), 0) = Z2.
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Proof. Similar to the proof above, let Ψ : I → Zn with Ψ(∂I) = 0 and its lifting
U : I → In+1 with U(0) = 0.

There are two cases.
If U(1) = 0, using the same argument above, we can show that Ψ is weakly

homotopic to 0.
If U(1) = M , say, Ψ(t) = ∂{f ≤ t}, it suffices to show that Ψ � 0.
Suppose not, we will have a relative homotopy map h : I×I → Z0

n with h(·, 0) = 0
and h(·, 1) = Ψ. Apply the lifting property to h, the constancy theorem and the
fact that U(0) 6= U(1) for Ψ would give a contradiction. �

3.2. Sequences of Chain Maps.

Definition 3.2 (Definitions (2.1) [Alm62]).

(1) For each n = 0, 1, 2, · · · , let I(1, n) be the cell complex of the unit interval
I = [0, 1] whose 1-cells are the subintervals,

[0, 1 · 3−n], [1 · 3−n, 2 · 3−n], · · · , [(3n − 1) · 3−n, 1]

and whose 0-cells are the endpoints,

[0], [1 · 3−n], · · · , [1]

(2) For each m = 1, 2, 3, · · · and n = 0, 1, 2, · · · ,
I(m,n) = I(1, n)m⊗ = I(1, n)⊗ · · · ⊗ I(1, n)

and I(m,n)p is the set of p-cells in I(m,n).

Definition 3.3 (Definitions (2.3) [Alm62]). A chain map I(m,n) → I∗(M) of
degree k is a graded homomorphism

(3.10) φM : I(m,n)→ I∗(M) of degree k

such that

(3.11) ∂ ◦ φM (αp) = φM (∂αp) ∀αp ∈ I(m,n)p

If φ0
M and φ1

M are two chain maps of degree k, a chain homotopy between φ0
M

and φ1
M is a graded homomorphism

(3.12) ψM : I(m,n)→ I∗(M) of degree k + 1

such that

(3.13) ψM (∂αp) + ∂ ◦ ψM (αp) = φ1
M (αp)− φ0

M (αp)

Theorem 3.4 (Theorem (2.4) [Alm62]). There exists a positive number εM with
the following property:

Let f : I(m+1, 0)0 → Zk(M) be any homomorphism satisfying FM (f(α), f(β)) <
εM whenever α and β are 0-cells in the vertex set of some 1-cell in I(m + 1, 0),
whose maximum is denoted by Θ. Then one can find a chain map

(3.14) φM : I(m+ 1, 0)→ I∗(M)

of degree k such that

(1) φM |I(m+1,0)0 = f
(2) For each α ∈ I(m + 1, 0)p(p ≥ 1), φM (α) is an isoperimetric choice for

φM (∂α)
(3) For each α ∈ I(m+ 1, 0)p(p ≥ 1), M(φM (α)) ≤ Θ
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(4) If φ′A is another chain map satisfying the above conclusions, then φ′A is
chain homotopic with φA

Proof. The theorem follows directly from the Proposition 3.1. �

3.3. The Constrution of the Map FM .
For each homotopy class [f ] ∈ πk(Zm(M); 0), choose a representative map f :

(Ik, ∂Ik)→ (Zm(M), 0). Apparently, f induces a chain map of degree k

(3.15) φM : (I(k, n), ∂I(k, n))→ (I∗(M), 0)

as long as n ≥ Nf where F(f(u), f(v)) ≤ εM whenever dist(u, v) ≤ 2−Nf .
If α1, · · · , αp are the k-cells of I(k, n)m, then

(3.16)

p∑
i=1

φM (αi)

is a cycle in Im+k(M).
Thus, we can define

(3.17) FM ([f ]) :=

[
p∑
i=1

φM (αi)

]
Exercise 6. FM is well-defined.

3.4. The Construction of the Map EM and the surjectiveness of FM .
Now we would like to seek a map EM : Hm+k(M)→ πk(Zm(M); 0) such that

(3.18) FM ◦ EM = IdHm+k(M)

This would imply that FM is an epimorphism.
Note that M is a smooth closed Riemannian manifold, and there exists a Lips-

chitz retraction r : U := Bη(M)→M for some small η > 0. For any homology class
τ ∈ Hm+k(M), by deformation theorem, we can always find an integral polyhedral
chain

(3.19) T ∈ Zm+k(U)

such that the homology class of r#(T ) ∈ Zm+k(M) is τ . W.l.o.g., we may also
assume that

(3.20) spt(T ) ⊂ RL ∩ {xi ∈ (0, 1),∀i}
and no coordinate vector (0, · · · , 0, 1, 0, · · · , 0) of RL is parallel with any face of T
of positive dimension.

Define f1 : (I, ∂I)→ (Zm+k−1(U), 0) to be

(3.21) f1(t) := ∂(T ∩ {x : x1 < t})
And then inductively, define fi : (Ii, ∂Ii)→ (Zm+k−i(U), 0) for i = 2, · · · , k as

(3.22) fi(t1, t2, · · · , ti) := ∂(fi−1(ti−1) ∩ {x : xi < ti})
For (t1, t2, · · · , tk) ∈ Ik, we can define a continuous map f := r# ◦ fk and set

(3.23) EM (τ) = [f ]

It is straightforward to show that (even though we haven’t proven the well-
defineness of EM )

(3.24) FM ◦ EM (τ) = τ
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3.5. Injectiveness of FM and Other Consequences.
The proof of the injectiveness of FM would be as follows: Suppose

(3.25) [f ] ∈ πk(Zm(M); 0) FM ([f ]) = [0]

and then we only need to seek a formula for a homotopy

(3.26)

h : ([0, 3]× Im, [0, 3]× ∂Im)→ (Zk(M), 0)

h(0, x) = 0 ∀x ∈ Im

h(3, x) = f(x) ∀x ∈ ∂Im

The formula was constructed by hand in [Alm62] which is too complicated to
be written down here. The key of the construction lies in finding the interpolation
formula (Section 6 [Alm62]) for chain maps. By applying the interpolation formula
on chain homotopies between different chain maps induced from the same f , one
could obtain a homotopy between f and 0 if FM ([f ]) = [0].

In fact, the same results hold for Zk(M ;Z2), Zk(M ; M) and Zk(M ; M;Z2) as
well.

Theorem 3.5. For any smooth closed Riemannian manifold M and any nonneg-
ative integers k and m, we have

(3.27)

πk(Zm(M ; M); 0) ∼= Hk+m(M)

πk(Zm(M ;Z2); 0) ∼= Hk+m(M ;Z2)

πk(Zm(M ; M;Z2); 0) ∼= Hk+m(M ;Z2)

4. Existence of Almost Minimizing Varifolds

4.1. Abstract Homotopy Relations.

Definition 4.1 (Cell complexes).

(1) Define I0(m, j)0 to be the set of 0-cells on ∂Im.
(2) Define d : I(m, j)0 × I(m, j)0 → N to be

(4.1) d(x, y) = 3j
m∑
i=1

|xi − yi|

and similarly d∞(x, y) = 3j sup |xi − yi|.
(3) Whenever ϕ : I(m, j)0 → Zn(Mn+1; M;Z2), we define the fineness of ϕ

by

(4.2) f(ϕ) = sup{d(x, y)−1M(ϕ(x), ϕ(y))}

(4) For i, j ∈ N, we deine n(i, j) : I(m, i)0 → I(m, j)0 to be

(4.3) n(i, j)(x) = argminy∈I(m,j)0d(x, y)

Now we can define the homotopy maps.

Definition 4.2 (Homotopy maps).

(1) Let δ > 0. We say that ϕ1 is m homotopic to ϕ2 with fineness δ if
and only if there exist positive integers k1, k2, k3 and a map

(4.4) ψ : I(1, k3)0 × I(m, k3)0 → Zn(M ; M;Z2)
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such that f(ψ) < δ and f(ϕj) < δ, and whenver j = 1, 2 and x ∈ I(m, k3)0,

(4.5)
ϕj : I(m, kj)→ Zn(M ; M;Z2), ϕj [I0(m, kj)0] = 0

ψ([j − 1], x) = ϕj(n(k3, kj)(x)), ψ[I(1, k3)0 × I0(m, k3)0] = 0

(2) An m homotopy sequence of mappings is a sequence of mappings {ϕi}
for which there exist positive numbers δi → 0 such that ϕi is m homotopic
to ϕi+1 with fineness δi and

(4.6) sup{M(ϕi(x)) : x ∈ dmn(ϕi),∀i ∈ N+} <∞

(3) Two m homotopy sequences of mappings S1 = {ϕi} and S2 = {ψi} are ho-
motopic if there exist positive numbers δi → 0 such that ϕi is m homotopic
to ψi with fineness δi.

(4) A nonempty collection of m homotopy sequences of mappings Π is called
an m homotopy class of mappings if
• S2 ∈ Π whenever S1 and S2 are homotopic and S1 ∈ Π.
• All S ∈ Π are homotopic to each other.

Definition 4.3 (Min-max Sequences).

(1) Define L : Π→ R to be

(4.7) L({ϕi}) = lim sup
i→∞

sup{M(ϕi(x))}

(2) Define the min-max width of Π by

(4.8) L(Π) = inf{L(S) : S ∈ Π}

(3) S ∈ Π is called a min-max sequence of Π provided that L(Π) = L(S).
(4) If S is a min-max sequence, then its critical set is defined to be

(4.9) C(S) = {V ∈ Vn(M) : V = lim
j
|ϕij (xj)|, ‖V ‖(M) = L(S)}

Note that C(S) is nonempty and compact.

Exercise 7. Every m homotopy class of mappings contains a min-max sequence.
(Hint: use the diagnal method.)

In the following, we will denote the collection of m homotopy classes of mappings
by

(4.10) π#
m(Zn(Mn+1; M;Z2), 0)

And the Almgren’s isomorphism also holds, i.e.,

(4.11) π#
m(Zn(Mn+1; M;Z2), 0) ∼= Hm+n(Mn+1;Z2)

Exercise 8. There exists Π ∈ π#
1 (Zn(Mn+1; M;Z2), 0) such that [Π] 6= 0 ∈

Hn+1(Mn+1;Z2) and moreover, the width L(Π) > 0. (Hint: Use isoperimetric
theorem)
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· · ·

Figure 2. Wiggling curves

4.2. Pull-tight.
Let’s recall the min-max construction by Birkhoff for closed geodesics in a sphere

and suppose that {γi(t)} is a min-max sequence of sweepouts. Before the curve
shortening process, a sequence of curves {γi(ti)} might not converge to a closed
geodesic as Figure 2 indicates. However, the Birkhoff curve shortening process
will help to reduce drastically the length of curves wiggling a lot. Thus, we can
show that the sequence of shortened curves shall converge to a closed geodesic as
long as their lengths converge to the width.

Similarly, in the Almgren-Pitts min-max theory, we will introduce some similar
process, which intuitively pulls wiggling hypersurfaces tight.

Theorem 4.1 (Theorem 4.3 [Pit81]). For any min-max sequence S ∈ Π, there
exists another min-max sequence S∗ ∈ Π such that C(S∗) ⊂ C(S) and any V ∈
C(S∗) is stationary in M .

Outline of proof. Suppose that S = {ϕi} and let c = supi,x M(ϕi(x)) <∞.
We can define compact sets

(4.12)

A = Vk(M) ∩ ‖V ‖(M) ≤ c
A0 = A ∩ {δV = 0}
A1 = A ∩ {F(V,A0) ≥ 2−1}
Ai = A ∩ {2−i ≤ F(V,A0) ≤ 2−i+1}, i = 2, 3, · · ·

Note that for any V ∈ A\A0, δV 6= 0 so we can always associate V with a vector
field XV such that δV (XV ) < 0. Therefore, by the construction of a paracompact
covering and the associated partition of unity, we can construct a continuous map
from A\A0 to the space of C1 vector fields on M .

The one parameter groups of diffeomorphisms from the vector fields above shall
pull S tight and eventually, C(S∗) will bypass all nonstationary varifolds.

However, there will be an issue in this pull-tight process, i.e., the fineness with
respect to the M norm, since the M continuity would not be preserved under one
parameter groups of diffeomorphisms. Therefore, we need to interpolate the maps
after pulling tight.

Note that the naive way of applying Almgren’s interpolation fomula could lead
to pulling back the varifolds along the pulling-tight diffeomorphisms, so we could
not guarantee that C(S∗) only consists of stationary varifolds. The correct way
to do this is to use the interpolation results from discrete to continuous and from
continuous to discrete in [MN14] multiple times as the Figue 3 indicates.

�
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Figure 3. Pull tight

4.3. Combinatorial Argument.
Now we introduce a combinatorial argument to help establish the result that

C(S) has at least one varifold with the almost minimizing property in Theorem
2.4.

Proposition 4.1. Given I(m, k), for nay σ ∈ I(m, k)0. we associate it with A(σ) =
{Ā(p, sj , rj), j = 1, 2, · · · , 3m} with rj > sj > 2rj+1(r1 < injM/2). Then we can
find a function

(4.13) α : I(m, k)0 → ∪A(σ)

such that α(σ) ∈ A(σ) and α(σ) ∩ α(τ) = ∅ whenver σ 6= τ and σ, τ ∈ spt (γ) for
some γ ∈ I(m, k).

Proof. We can repeatedly take the annulus with smallest radius from the union of
A(σ) where α(σ) is not defined yet and define α at the corresponding 0-cell. Then
we could discard all the annuli intersecting with it. It is easy to check that we
can obtain the desired α since we only discard one annulus from each A(σ) in each
step. �

Now we can state our main existence theorem.

Theorem 4.2 (Theorem 4.10 [Pit81]). If Π is an m homotopy class of maps, then
for any pulled-tight min-max sequence S ∈ Π, there exists a varifold V in the critical
set C(S) satisfies:

(1) ‖V ‖(M) = L(Π).
(2) V is stationary in M .
(3) For any collection A of Jm = 3m concentric closed annuli {Ā(p, si, ri)} as in

Proposition 4.1, V is almost minimizing in at least one open A(p, si, ri).

In particular, the last property implies that for each p ∈M , there exists r(p) > 0
such that V is almost minimizing in A0(p, s, r) for all s ∈ (0, r).

Proof. W.l.o.g., we may assume that L(Π) > 0 and S = {ϕi} is the pulled-tight
min-max sequence. Suppose that the argument is not true, and for any V ∈ C(S),

there exists a collection A(V ) = {Ā(p, si, ri)}Jmi=1 such that V is not almost mini-
mizing in any A(p, si, ri).
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Recall the definition of almost minimizing property and the compactness of C(S)
which indicate that there exist a finite sequence {Vi}Mi=1 ⊂ C(S) and an associated
sequence of positive numbers {εi}Mi=1 such that

(1) C(S) ⊂
⋃M
i=1{V ∈ Vn(M) : F(V, Vi) < 4−1εi}.

(2) For each Vi, T ∈ Zn(M ; M;Z2) with F(|T |, Vi) < εi and any δ > 0, j =
1, 2, · · · , Jm, there exits a sequence T = T1, T2, · · · , Tq ⊂ Zn(M ; M;Z2)
such that

(4.14)

⋃
k

spt(Tk − T ) ⊂ A(pi, s̃ij , r̃
i
j)

sup
k

M(Tk − Tk−1) ≤ δ

sup
k

M(Tk) ≤M(T ) + δ

εk < M(T )−M(Tq)

where s̃ij < sij < rij < r̃ij satisfying the condition that s̃ij > 2r̃ij+1.

We also denote min(min{2sij − rij+1}/100, 1) > 0 by t for convenience.
We can choose small ε ∈ (0,mini{ εi2 }) and large N ∈ N such that ∀i ≥ N ,

(1) Either M(ϕi(x)) < L(S) − 2ε, or F(|ϕi(x)|, Vj) < 1
2εj for some j =

1, 2, · · · ,M .
(2) mfM(ϕi) ≤ tε/(2 · 6m).
(3) For any T, S ∈ Zn(M ; M;Z2), if M(T − S) ≤ ε, then there exists Q ∈

In+1(M ;Z2) with ∂Q = T − S and

(4.15) M(Q) ≤M(T − S)

We now show that for any fixed i > N , supx M(ϕi(x)) can be decreased by at
least ε > 0 along a discrete homotopy without increasing fM too much. Then the
new sequence S∗ ∈ Π shall give a contradiction, since

(4.16) L(Π) ≤ L(S∗) ≤ L(S)− ε ≤ L(Π)− ε

Fixed i > N , whenever x ∈ I(m,ni)0 = dmn(ϕi) with M(ϕi(x)) ≥ L(S) − 2ε,
we choose Vix such that

(4.17) F(|ϕi(x)|, Vix) <
εix
2

and by Proposition 4.1, we know that we can associate such x with A(px, s̃x, r̃x) ∈
A(Vix). The set of all such x will be denoted by Bi.

In order to construct a homotopy, we need 2 ingredients.
The first ingredient is an application of the slicing theorem [Sim84]. For σ0 ∈

I(m,ni), x, y ∈ sptσ0 (x 6= y) and x ∈ Bi, by Isoperimetric Theorem, there exists
Q ∈ In+1(M ;Z2) with ∂Q = ϕi(x)− ϕi(y) and M(Q) ≤ mfM(ϕi) ≤ tε/(2 · 6m).

if we write u(x) = |x− px| for x ∈M , we have

(4.18)

∫ ∗r̃x+t

s̃x−t
M〈Q, u, s+〉dL1(s) ≤M(Q)
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Therefore, there exists ˜̃sx < s̃x < r̃x < ˜̃rx such that

(4.19)

‖ϕi(xj)‖∂B(p, ˜̃sx) ∪ ∂B(p, ˜̃rx) = 0

〈Q, u, ˜̃sx+〉 ∈ In(M ;Z2)

〈Q, u, ˜̃rx+〉 ∈ In(M ;Z2)

M〈Q, u, ˜̃sx+〉 ≤ ε/2m+1

M〈Q, u, ˜̃rx+〉 ≤ ε/2m+1

Note that here ˜̃sx and ˜̃rx can be chosen to be independent of σ and y with the same
estimates.

The other ingredient is a restatement of the non-almost-minimizing property. By
assumption, let δ = fM(ϕi) and we also know that there exists N1 = N1(i) ∈ N such
that ∀x ∈ Bi, there exits a sequence ϕi(x) = T x1 , T

x
2 , · · · , T x3N1

⊂ Zn(M ; M;Z2)
such that

(4.20)

⋃
k

spt(T xk − T ) ⊂ A(px, s̃x, r̃x)

sup
k

M(T xk − T xk−1) ≤ δ

sup
k

M(T xk ) ≤M(T ) + δ

εix < M(ϕi(x))−M(T x3N1 )

In this case, we shall define the replacement map

(4.21) R : {(x, y) ∈ Bi × I(m,ni)0|∃σ ∈ I(m,n), x, y ∈ σ} → Zn(M ; M;Z2)

by

(4.22)
R(x, y) = ϕi(y)x(M\B̄(px, ˜̃rx)) ∪B(px, ˜̃sx) + ϕi(x)xA0(px, ˜̃sx, ˜̃rx)

− 〈Q, u, ˜̃sx+〉+ 〈Q, u, ˜̃rx+〉
and verify that

(4.23)
M(R(x, y)− ϕi(x)) ≤ 2 · 3mfM(ϕi)/t

M(R(x, y)− ϕi(y)) ≤ 2 · 3mfM(ϕi)/t

For convenience, we extend R to Bi × I(m,ni)0 with 0 value.
Now, let N2 = ni+N1 +2 and we can define the homotopy (visualized in Figure

4)

(4.24) ψ : I(0, N2)0 × I(m,N2)0 → Zk(M ; M;Z2)

by

(1) ψ(0, y) = ϕi(0, n(N2, ni)(y))
(2) ψ(3−N2 , y) =

∑
x∈Bi,d∞(n(x),y)≤8·3N2 (R(x, n(N2, ni)(y))−ϕi(0, n(N2, ni)(y)))+

ϕi(0, n(N2, ni)(y))
(3) ψ(k·3−N2 , y) =

∑
x∈Bi,d∞(n(x),y)≤8·3N2 (T x

min{3N2 ,k,8·3N2−d∞(x,y)}−ϕi(x))xA0(px, sx, rx)

+ ψ(3−N2 , y) for k ≥ 1.

where n(x) is an abbreviation for n(ni, N2)(x).
We can verify that ϕ∗i := ψ(1, ·) satisfies that supϕ∗i ≤ supϕi−ε and S∗ = {ϕ∗i }

gives the contradiction.
�
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Figure 4. Homotopy Construction

5. Regularity

In this section, we shall show that the support of a varifold with almost minimiz-
ing property as in Theorem 2.4 is smooth outside a singular set of codimension
no less than n− 7 and then the existence result in Theorem 4.2 will conclude the
existence of one minimal hypersurface in any closed manifold.

Theorem 5.1 (Theorem A [Pit81],Theorem 4 [SS81]). For any smooth closed man-
ifold Mn+1(n ≥ 2), there exists a smooth minimal hypersurface Σ ⊂ M with
Hα(sing(Σ)) = 0 for any non-negative α > n − 7. In particular in case n ≤ 6,
Σ is smooth.

The regularity argument was originally proved by R. Schoen and L. Simon [SS81]
(Pitts proved it for the case 2 ≤ n ≤ 5 using Schoen-Simon-Yau curvature esti-
mate), where they derived the following compactness theorem for stable minimal
hypersurfaces.

Theorem 5.2 (Theorem 2 [SS81]). Suppose {Σi} is a sequence of orientable C2

open hypersurface with

(5.1) 0 ∈ Σi,Hn−2
((

Σi\Σi
)
∩Bn+1(0, ρ0)

)
= 0

Suppose that each Σi is stable in Bn+1(0, ρ0) and lim supi→∞Hn(Mi∩Bn+1(0, ρ0)) <
∞. Then there exist a subsequence, still denoted by {Σi}, and a varifold V such
that

(5.2) V = lim
i
|Mi ∩Bn+1(0,

1

2
ρ0)|

Moreover,

(5.3) spt‖V ‖ ∩B(0,
1

2
ρ0) = Σ ∩B(0,

1

2
ρ0)

where Σ is an orientable hypersurface with Hn(Σ ∩ B(0, 1
2ρ0)) < ∞, 0 ∈ Σ and

Hα(sing(Σ) ∩B(0, 1
2ρ0)) = 0 for any non-negative α > n− 7.

Recall that Theorem 4.2 and Theorem 2.4 imply that there exists a nonempty
set A ⊂ IVn(M) consisting of non-zero stationary integral varifolds V with the
properties that for any p ∈ M ∩ spt‖V ‖, there is an r(p) > 0 such that for each
0 < s < t < r(p), there exists a varifold V ∗ ∈ A (a replacement or a comparison
surface) with

(1) ‖V ∗‖(M) = ‖V ‖(M)
(2) V ∗xGn(M\Ā(p, s, t)) = V xGn(M\Ā(p, s, t))
(3) V ∗xGn(A(p, s, t)) = (limi→∞ |Ti|)xGn(A(p, s, t)), where

(5.4) Tj ∈ Zn(M,M\A(p, s, t);Z2)

with sup M(Tj) < ∞ is locally area minimizing in A(p, s, t) and such that
|Tj | is stable in A(p, s, t). In particular, the regularity result by Federer
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[Fed70] implies that sptTj ∩ A(p, s, t) is a smooth minimal hypersurface
outside a singular set of codimension no less than 7.

By virtue of (3) and the compactness reuslt (Theorem 5.2), we see that spt‖V ∗‖∩
A(p, s, t) = Σ̄ ∩ A(p, s, t) is also a smooth minimal hypersurface outside a singular
set of codimension no less than 7.

Firstly, we show that C ∈ Var Tan(V, p) has the property that C ∈ IVn(RL)
with Hα(sing(C)) = 0 for any nonnegative α > n− 7.

W.l.o.g., we may assume that

(5.5) µt−1
q #

◦ τp#V → C ∈ Vn(RL)

where tq ↘ 0(tq < r(p)/4), µ is the dilation map and τ is the translation map.
As a consequence, C 6= ∅ and it is a stationary integral cone. The replacement
property (3) gives V ∗q for the region A(p, tq, 2tq) and W := limq→∞ µt−1

q #
◦ τp#V

∗
q ∈

IVn(RL) with

(5.6) Hα(singW ∩A(0, 1, 2)) = 0,∀α ≥ 0, α > n− 7

Note that W and C coindice in Gn(RL ∩ Ā(0, 1, 2)), and W is stationary as well.
Since
(5.7)

lim
R→∞

R−n‖W‖(B(0, R)) = lim
R→∞

R−n‖C‖(B(0, R)) = ωnΘn(‖C‖, 0) = ωnΘn(‖W‖, 0)

and the monotonicity formula implies that ρ−n‖W‖(B(0, ρ)) ≡ ωnΘn(‖W‖, 0) for
any ρ > 0, so W is also a rectifiable cone and W = C. Thus, we conclude that
sptC is smooth outside a small singular set.

Now, we are going to show that V itself is regular, which heavily relies on the
replacement property. Let V ∗ be a replacement for V in A(p, s, t) and

Recall that the stationarity (Proposition 2.5 [Pit81]) implies that ∀p ∈ M,∃t ∈
(0, r(p)) whenever τ ∈ (0, t)

(5.8) ∅ 6= spt‖F‖ ∩ ∂B(p, ρ) = ∂B(p, ρ) ∩ (spt‖F‖\B̄(p, ρ))

for any ρ ∈ (τ, t) and F ∈ IVn(M) stationary and nonzero in A(p, τ, t).
By Sard’s theorem, let 0 < s1 < s < s2 < t with ∂B(p, s2) t (spt‖V ∗‖), and let

V ∗∗ be a replacement for V ∗ on A(p, s1, s2).
Let Y0 ∈ reg‖V ∗‖ ∩ ∂B(p, s2), σ > 0 small enough and let

(5.9)

Σ = B(Y0, σ) ∩ ∂B(p, s2)

Σ+ = B(Y0, σ) ∩B(p, s2)

Γ = B(Y0, σ) ∩ ∂B(p, s2) ∩ reg‖V ∗‖

Fix X ∈ Γ and eX ∈ RL such that eX ∈ (TXΣ)⊥ points into B(p, s2). We start
with showing that

(5.10) lim
k→∞

µλ−1
k #τX#V

∗∗ = Θn(‖V ∗∗‖, X)|TXreg‖V ∗‖|

for any λk → 0.
Denote by C a tangent cone V ∗∗ at X, which is stationary, so we have

(5.11)

∫
SL−1∩(reg(C))0

〈Z, eX〉dHn−1(Z) = 0

for any component (reg(C))0.
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Since V ∗ and V ∗∗ coincide in A(p, s2, t), C and TXreg‖V ∗‖ have the following
property:

(5.12) reg(C) ∩ {Z : Z · eX < 0} = TXreg‖V ∗‖ ∩ {Z : Z · eX < 0}
Hence, we can derive from the unique continuation property as well as the regularity
of both C and TXreg‖V ∗‖ that

(5.13) TXreg‖V ∗‖ ⊂ reg(C)

and either reg(C) = TXreg‖V ∗‖ or there is another component (reg(C))0 consisting
entirely of points Z such that Z · eX ≥ 0. In the latter case, (5.11) implies that the
component is contained in TXM ∩{Z : Z · eX = 0} ≡ TXΣ, thus, (reg(C))0 ≡ TXΣ
contradicting the smallness of the singular set. Thus, reg(C) = TXreg‖V ∗‖ and the
conclusion holds.

In order to use the unique continuation theorem, we need to represent reg‖V ∗‖
and reg‖V ∗∗‖ as graphs over TXreg‖V ∗‖ near X. This could be proved by showing
that

(5.14) lim
Z→M,Z∈spt‖V ∗∗‖

|(Z −X) · ν(X)|
|Z −X|

= 0

is locally uniform for X in a compact subset of Γ where ν(X) is a unit normal for
spt‖V ∗‖. Indeed, this is true due to the compactness theorem.

Then, the unique continuation theorem indicates that reg‖V ∗‖ = reg‖V ∗∗‖ on
Gn(A(p, s, s2)).

We can repeat the argument above with another replacement Ṽ ∗∗ for V ∗ on
A(p, s̃1, s2) with arbitrary s̃1 ∈ (s1, s). Then, we obtain that

(5.15) Ṽ ∗∗xGn(A(p, s, s2)) = V ∗xGn(A(p, s, s2)) = V ∗∗xGn(A(p, s, s2))

and moreover, the unique continuation leads to

(5.16) Ṽ ∗∗xGn(A(p, s̃1, s2)) = V ∗∗xGn(A(p, s̃1, s2))

Hence, we can conclude from (5.8) that

(5.17) spt‖V ‖ ∩ ∂B(p, s̃1) = spt‖Ṽ ∗∗‖ ∩ ∂B(p, s̃1) = spt‖V ∗∗‖ ∩ ∂B(p, s̃1)

By the arbitrariness of s̃1, we have

(5.18) spt‖V ‖ ∩A(p, s1, s) = spt‖V ∗∗‖ ∩A(p, s1, s)

which is smooth outside a small singular set.
In sum, V itself is smooth outside a singular set of codimension no less than 7.
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V ∗

V ∗∗

Ṽ ∗∗

tss1 s̃1 s2

Figure 5. Replacement

6. Existence of Infinitely Many Minimal Hypersurfaces

In this section, we shall outline the proof for the existence of inifintely many
minimal hypersurfaces in a closed manifolds with C∞ generic metrics (Baire sense).

Given a smooth closed manifold Mn+1, suppose that M is the space of C∞

Riemannian metrics on M and Mf ⊂ M is the subset of metrics which don’t
admit infinitely many minimal hypersurfaces. The main theorem will be as follows.

Theorem 6.1 (Main Theorem). Mf is a meagre set.

6.1. Weak Homotopic equivalence Z0
n(Mn+1;Z2) ∼ RP∞ and p-width.

Recall that Almgren’s Isomorphism shows that

(6.1) πk(Zn(Mn+1;Z2), {0}) ∼=

{
Z2, k = 0, 1

0, else

Therefore, it suffices to construct a map between Z0
n(Mn+1;Z2) and RP∞ preserv-

ing the homotopy groups.
To do so, let’s fixed a Morse function f : M → [0, 1], and then we can define

a map Ψ : RP∞ → Z0
n(Mn+1;Z2) as follows. For any a = [a0 : a1 : a2 : · · · :

ak : 0 : 0 : · · · ] ∈ RP∞, we can associate a polynomial pa : R → R defined by
pa(t) = a0 + a1t+ a2t

2 + · · ·+ akt
k. With this, we can let

(6.2) Ψ(x) := ∂{pa(f) ≤ 0}

This map gives a weak homotopic equivalence between the two spaces. Let
λ̄ ∈ H1(Z0

n(Mn+1) be the nontrivial element and we can define the p-admissible
set by

(6.3) Pp = {Ψ : X → Z0
n(M ; F;Z2)|X is a finite simplicial complex,Ψ∗(λ̄p) 6= 0}
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Note that here we use the F metric instead of the flat norm for the continuity, and
this is due to technical reasons. One insists to use the flat norm needs to assume
no mass concentration [MN14].

M. Gromov [Gro03] and L. Guth [Gut09] investigated a sequence of numbers
related to Pp called p-width ωp defined by

(6.4) ωp(M, g) = inf
Ψ∈Pp

sup
x∈dmn(Ψ)

M(Ψ(x))

More precisely, they proved that there exist two constants c(M, g), C(M, g) > 0 so
that

(6.5) c(M, g) ≤ p−1/nωp ≤ C(M, g)

Gromov also conjectured that ωp should satisfy Weyl law as well, which was recently
proved by Y. Liokumovich, F.C. Marques and A. Neves [LMN18].

Theorem 6.2. There exists a positive constant a(n) only depending on the dimen-
sion, such that

(6.6) lim
p→∞

p−1/nωp(M, g) = a(n)Vol(M, g)n/(n+1)

Note that almost directly, we also have

Lemma 6.1 (Lemma 2.1, [IMN18]). ωp(M, g) is locally Lipschitz w.r.t. g in the
C0 topology.

6.2. Almgren-Pitts Realizations APRp. One natural question on the p-width
is that whether they could be realized by some minimal hypersurfaces possibly with
multiplicities from Almgren-Pitts min-max theory.

The difficulty lies in the fact that we don’t bound the dimension of the cube
of which the domain of Ψ in the p-admissible set could be viewed as a cubical
subcomplex. As a consequence, Pitts’ combinatorial arugment could not work well.

One way to overcome the difficulty relies on the application of bumpy metrics
by Marques-Neves [MN16]. However, this method could only work for the case
3 ≤ n+ 1 ≤ 7 due to the existence of singularies in minimal hypersurfaces.

Here, we outline another way found by the author, which involves some topolog-
ical arguments [Li19].

Suppose that we’ve already chosen a min-max sequence {Ψi} such that

(6.7) ωp = lim sup
i

sup
x∈dmn(Ψi)

M(Ψi(x))

For each fixed Ψi with dmn(Ψi) = Xi, we can restrict it to the k-skleteton X
(p)
i

and it is not difficult to check that Ψi|X(p)
i
∈ Pp as well. Moreover, by a general

Whitney embbeding theorem, we may embedX
(p)
i into I2p+1 and then find a cubical

subcomplex to approximate it. The upshot will be a new min-max sequence {Ψ′i}
whose elements have domains as a cubical subcomplex of I2p+1.

Definition 6.1. We define the Almgren-Pitts Realization for p-width, denoted
by APRp(M, g), to be the nonempty set of all integral rectifiable varifolds V satis-
fying

• ‖V ‖(M) = ωp(M, g).
• V is a singular minimal hypersurface with optimal regularity.
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• V has property (2p+1), i.e., for any q ∈M and J2p+1 = 32p+1 concentric
annuli {A(q, si, ri)} where {ri} and {si} satisfy

ri > si > 2ri+1(6.8)

V is stable in at least one of {A(p, si, ri)}.

Almgren-Pitts theory above shows that APRp(M, g) 6= ∅ for any p. Further-
more, by Sharp’s compactness [Sha15], one can see that APRp(M, g) is a compact

set, and for varying metrics gi
C3

−−→ g and Vi ∈ APRp(M, gi), the varifold limit
V = limi Vi ∈ APRp(M, g).

6.3. Adapted Irie-Marques-Neves Argument. For any open subset U ⊂ M ,
we define

(6.9) MU,p = {g ∈M|∀V ∈ APRp(M, g), ‖V ‖(U) > 0}
and

(6.10) MU =

∞⋃
p=1

MU,p

Proposition 6.1. MU,p is an open subset of Γ∞(M) for any open subset U , and
so is MU .

Proof. Given g0 ∈ MU,p, we would like to show that there is an δ > 0 such that
Bδ(g0, C

3) ∩ Γ∞(M) ∈MU,p.

Suppose not, there will be a sequence gi ∈ Γ∞(M) such that gi
C3

−−→ g0 but
gi /∈MU,p. Therefore, we can choose a sequence {Vi} such that Vi ∈ APRp(M, gi)
but Vi(U) = 0. Up to a subsequence,

(6.11) Vi ⇀ V

where V ∈ APRp(M, g0).
Since U is open, ‖V ‖(U) ≤ limi→∞ ‖Vi‖(U) = 0 which gives a contradiction. �

Lemma 6.2 (Key Lemma). For any open subset O of M, if Mf is dense in O,
then for any open subset U ⊂ M , MU is dense in O. Thus, Mf ∩ O is a meagre
set inside O.

Proof. Fix U as an open subset of M . For any g in O, from the denseness of Mf ,
there is a g′ ∈Mf such that g′ is arbitrarily close to g and the set

(6.12)
C(g′) ={

N∑
j=1

mjvolg′(Σj) : N ∈ N, {mj}Nj=1 ⊂ N, {Σj}Nj=1

singular minimal hypersurfaces with optimal regularity}
is countable and thus has empty interior.

Let h be a smooth nonnegative function with spt(h) ⊂ U and h(x) > 0 for
some x ∈ U . Let g′(t) = (1 + th)g′. Since O is open, there is t0 > 0 arbitrar-
ily small such that {g′(t)|0 ≤ t ≤ t0} ⊂ O. The Weyl law and the fact that
Vol(g′(t0)) > Vol(g′(0)) imply the existence of p = p(t0) ∈ N with ωp(M, g′(t0)) >
ωp(M, g′). Hence, by the continuity of ωp(M, g′(t)), there exists t1 ∈ (0, t0) such
that ωp(M, g′(t1)) > ωp(M, g′) and ωp(M, g′(t1)) /∈ C(g′).

Now it suffices to show that g′(t1) ∈MU,p.
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Suppose not, we can find V ⊂ APRp(M, g′(t1)) such that ‖V ‖(U) = 0. Note
that g′(t1) = g′ outside U so we have

(6.13) ‖V ‖(M) =

N∑
j=1

mjvolg′(t1)(Σj) =

N∑
j=1

mjvolg′(Σj) ∈ C

where {Σj} is a finite set of singular minimal hypersurfaces with optimal regularity
with respect to both g′(t1) and g′. This gives a contradiction.

Finally, let {Ui} be a countable basis of M , then Mf ∩ O ⊂
⋃
i(O\MUi

) is a
meagre set. �

Proof of Main Theorem. Let O = Int(Mf ) and it is easy to see thatMf ⊂ (Mf ∩
O)
⋃
∂(Mf ). From Lemma 6.2, we know that Mf ∩O is meagre. Since ∂(Mf ) is

nowhere dense, Mf is also meagre. �
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